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Abstract

This paper considers a model in which contestants compete in two sequen-
tial imperfectly discriminating contests where the prize in each contest has a
common but uncertain value, and the value of the prize in the �rst contest
is positively related to that in the second. The contestant who obtains the
prize in the �rst contest (the incumbent) privately observes its value, thereby
introducing asymmetric information. Relative to the case where the incum-
bent�s private information does not provide a useful estimate of the value of the
prize in the second contest, e¤ort expenditures in the second contest strictly de-
crease. Further, the incumbent is strictly better o¤, while the other contestants
(the challengers) are strictly worse o¤. Counterintuitively, the incumbent�s ex
ante probability of winning is strictly less than that of a challenger, despite
expending (weakly) more e¤ort than a challenger in expectation. E¤ort expen-
ditures in the �rst contest increase such that total e¤ort expenditures over the
two contests increase, relative to the case of independent prizes. In the second
(terminal) contest, expected e¤ort expenditure of an individual contestant is
decreasing in the number of contestants, the expected utility of a contestant
is decreasing in the number of contestants, and the aggregate expected e¤ort
expenditure is increasing in the number of contestants. Alternative methods
of modeling an incumbency advantage are also considered.

�I would like to thank my advisor, Rajiv Sarin, as well as Brit Grosskopf, Timothy Gronberg
and Martha Gukeisen for their many helpful suggestions and comments. All errors are my own.
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1 Introduction

Consider a group of �rms who lobby the government for monopoly rights in a par-
ticular market, the value of which are uncertain. Whichever of these �rms prevails
obtains a �nitely-lived monopoly and the corresponding monopoly rents. Once the
initial allocation has expired, the monopolist from the previous period and its rivals
are then in a position to recommence lobbying to obtain monopoly rights for the next
period. However, the game in this subsequent round may have changed signi�cantly.

In particular, it is natural to think that, upon winning, the monopolist will learn
the value of the rents for which it lobbied�information to which its rivals would not
be privy. Assuming monopoly rents in di¤erent periods are related, this gives rise
to asymmetric information in the subsequent period. Thus, the second iteration
of lobbying may be di¤erent than the �rst. As such, studying a single period rent
seeking game in isolation may not accurately predict the behavior of such rent seeking
�rms.

This paper considers a model in which contestants compete in two sequential
contests where the prize in each contest has a common but uncertain value, and the
value of the prize in the �rst contest is positively related to that in the second contest.
The contestant who obtains the prize in the �rst contest (the incumbent) privately
observes its value, which provides a noisy estimate of the value in the second contest,
thereby introducing asymmetric information. The contestants who do not obtain
the prize in the �rst contest (the challengers) do not hold any private information in
the second contest. Since contestants do not interact after the second contest, this
framework allows me to examine the e¤ect of information asymmetry on behavior
in a one-shot game, as well as the e¤ect on behavior when information asymmetry
arises due to an incumbency advantage.

I utilize the well known model of imperfectly discriminating contests introduced in
Tullock�s (1967) seminal paper, and the associated literature is vast. Such a contest
is a game in which economic agents expend unrecoverable e¤ort in order to increase
the probability of winning a prize. The contestant with the highest e¤ort level does
not win with certainty, but has the highest probability of winning.

Interestingly, I �nd that in the second contest, ex ante, the incumbent will expend
weakly more e¤ort than a challenger, but wins with a strictly lower probability. The
intuition behind this result is that the incumbent expends little or no e¤ort when she
believes the value of the prize is low. As a result, the incumbent obtains the prize
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with low probability when its value is low. However, when the incumbent believes
the value of the prize is high, she expends more e¤ort than the challengers such that
in expectation, the incumbent expends weakly more e¤ort than a challenger. The
incumbent�s low e¤ort expenditures when she believes the value of the prize is low
dominates the higher e¤ort expenditures when she believes the value of the prize is
high, such that, ex ante, the incumbent�s probability of obtaining the prize is strictly
lower than that of a challenger.

I also �nd that, relative to the case where the value of the prizes in the two
contests are independent (rendering the incumbents private information strategically
irrelevant), aggregate e¤ort expenditures fall in the second contest, but increase in
the �rst contest such that total e¤ort expenditures summed over the two contests
weakly increases.1 This implies that, ex ante, contestants are worse o¤ when there
is an informational incumbency advantage. That is, the private incentive to acquire
information relevant to the second contest is su¢ ciently high that contestants will
increase their �rst period e¤ort expenditures such that they are, ex ante, worse o¤.
The intuition behind this result is that challengers are strictly worse o¤ than in
the case of independent prizes, while the incumbent is strictly better o¤. Thus,
contestants in the �rst contest stand to gain in the second contest by obtaining the
prize in the �rst contest, and stand to lose in the second contest by not obtaining the
prize in the �rst contest. This added incentive is su¢ cient to increase aggregate e¤ort
expenditures over the two contests relative to the case of independent prizes. By way
of contrast, in analogous all-pay and �rst-price auctions, expected revenue summed
over both periods is unchanged between the case of an informational incumbency
advantage and the case of independent values, because uninformed bidders obtain
an expected payo¤ of zero in both cases. That is, bidders in the �rst period do not
stand to lose in the second auction by obtaining the good in the �rst auction.

In the second (terminal) contest, expected e¤ort expenditure of an individual
contestant is decreasing in the number of contestants, the expected utility of a con-
testant is decreasing in the number of contestants, and the aggregate expected e¤ort
expenditure is increasing in the number of contestants. Interestingly, in analogous
one-shot all-pay and �rst-price auctions, revenue and pro�t predictions are invariant
to the number of bidders, and an uninformed bidder�s expected pro�t is zero.

The second period of my model, in which the incumbent has an informational
advantage, is a generalization of Wärneryd (2003), which examines a one-shot, two-

1Aggregate e¤ort over the two periods strictly increases relative to the case of independent prizes
if the support of distribution from which prizes are drawn includes zero.
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player imperfectly discriminating contest where the prize is of common and uncertain
value. My model di¤ers in that there are n � 2 contestants, and I allow the
incumbent�s information to be imperfectly informative. Indeed, I assume that the
value of the prize in period two is positively regression dependent on the value in
period one, a weaker assumption of positive dependence than the notion of a¢ liated
random variables used extensively throughout the auction literature.

The asymmetric information structure studied in the second contest of my model
has been studied in one-shot �rst-price auctions by Engelbrecht-Wiggans et al. (1983)
and Milgrom and Weber (1982). They �nd that this asymmetric information struc-
ture guarantees that the uninformed bidders have an expected payo¤of zero. Further
the informed bidder earns a positive information rent. Expected revenue is less than
in a symmetric information structure due to the informed bidder�s information rent.
Grosskopf et al. (2009) considers this information structure in the context of an
all-pay auction, and �nds that expected revenue and the expected payo¤ of bidders
are identical to those in a �rst-price auction.

This type of asymmetric information structure has also been examined in repeated
games. Hörner and Jamison (2008) study an in�nitely repeated �rst-price auction
with the information structure of Engelbrecht-Wiggans et al. (1983). In their
model, bids are observed at the end of each auction, such that uninformed bidders
update their beliefs regarding the value of the good by observing the behavior of the
informed bidder. Consequently, uninformed bidder are able, in �nite time, to infer
the informed bidder�s private information.

In a paper closely related to this one, Virág (2007) examines a twice repeated
�rst-price auction with an initial information structure as in Engelbrecht-Wiggans
et al. (1983). There are two bidders, and one of them holds private information in
the �rst period. Bids are not observed at the end of the period. If the uninformed
bidder loses the �rst period auction, then asymmetric information still exists in the
second period. If the uninformed bidder wins the �rst period auction she observes
the value of the good, and information is symmetric in the second period. Virág
�nds that bidders bid more aggressively, as the uninformed bidder has more to gain
in the �rst period, and the informed bidder has a higher incentive to win, in order
to maintain the asymmetric information in the second period. My model di¤ers in
that contestants are symmetric (uninformed) in the �rst period, and I consider an
imperfectly discriminating contest rather than a �rst-price auction. However, my
results are similar to his in that, contestants expend more e¤ort in response to the
information asymmetry.
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In Appendix B, I consider an incumbency advantage in which the incumbent has
a strictly greater probability of obtaining the prize for any vector of e¤ort levels.
Interestingly, I �nd that the e¤ect on aggregate e¤ort expenditures over the two
periods is not monotonic in the magnitude of this "status quo bias." This approach
has not been considered in the literature. The closest paper is Baik and Lee (2000),
which considers a contest where contestants can carry a portion of their e¤ort in
an early contest on to a �nal contest. They �nd that total e¤ort levels increase in
response to this carry-over. Their �ndings were generalized in Lee (2003). Schmitt
et al. (2004) show that this kind of carry-over will not change aggregate e¤ort in a
repeated contest, although it will shift e¤ort towards early rounds.

Also in Appendix B, I consider a model in which the incumbent enjoys a cost
advantage. I �nd that aggregate e¤ort expenditures increase in response to the
incumbents cost advantage. In a closely related paper, Mehlum and Moene (2006)
show that, if the incumbent in a in�nitely repeated imperfectly discriminating contest
has an inheritable cost advantage over its rival, the e¤ort level of both contestants
rises in any given period. In their model, information is complete.

The remainder of the paper is organized as follows. Section two presents the
model. I �rst consider the case where the incumbent does not gain any useful
information in t = 1. This is the benchmark case against which the other case is
compared. The case where the incumbent has an informational advantage is then
examined. Section three provides a conclusion. Alternative methods of modeling
an incumbency advantage are considered in Appendix B. Namely, the case in which
the incumbent has an increased probability of winning the contest for any vector of
e¤ort levels, and the case in which the incumbent has a lower marginal cost of e¤ort
than challengers.

2 Model

There are two periods t = 1; 2. In each of these periods a set of risk neutral
contestants N = f1; 2; :::; ng compete for a prize with a common value. The value
in period t is a realization of the random variable Vt, where V1 and V2 are both
distributed according to the absolutely continuous distribution function FV , with
support contained in [v;1) with v > 0. The expected value of Vt = E (V ). This
distribution function is commonly known. In period t each contestant i 2 N expends
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unrecoverable e¤ort, xit 2 R+ at a cost of Ci (xit) = xit in an e¤ort to obtain the
prize, vt. These e¤ort levels are chosen simultaneously. Contestants are not budget
constrained; the strategy space of each player is R2+. The vector of e¤ort levels in
period t is xt�fx1t; x2t; :::; xntg. Further, x�it � xtnxit and N�i � Nni.

The function pit : Rn+ ! [0; 1] maps xt into the probability that contestant i will
receive the good in period t. This function, which is typically called the contest
success function in the contest literature, is given by

pit (xit;x�it) =

8<:
xit

xit+
P

j2N�i
xjt

if maxxt 6= 0

bi if maxxt = 0;

where bi 2 [0; 1] for any i and
X

i2N
bi � 1. Note that bi is the probability that

player i receives vt when none of the contestants expend positive e¤ort in t. Dif-
ferent applications suggest di¤erent assumptions regarding b �fb1; b2; :::; bng. Two
common assumptions are bi = 1

n
;8i 2 N or that bi = 0;8i 2 N. The choice of

b does not a¤ect the following results. This contest success function is a special
case of the class axiomized in Skaperdas (1996) and de�nes what is sometimes called
a lottery contest because the probability of a contestant obtaining the prize is her
proportion of total e¤ort, as in a lottery.

Contestants in period t do not observe the value of vt before choosing xit. At
the conclusion of period t, one of the contestants receives the prize, and privately
observes vt. As such, before contestants choose their e¤ort expenditures in t = 2 the
contestant who received the good in t = 1 (the incumbent) holds private information,
while the remaining contestants (the challengers) hold only public information. The
incumbent is denoted as contestant I. The set of contestants who did not obtain the
prize in t = 1, the challengers, is C � N=I. C�j � N�j \C is the set of challengers
that does not include contestant j and xC � fxj2 : j 2 Cg is the vector of e¤ort
levels chosen by the challengers.

2.1 Intertemporal Independence of Values (IIV)
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Consider the case in which v1 and v2 are independent draws from FV . In this
case E (V2 j v1) = E (V ); the incumbent�s private observation of v1 does not provide
information of strategic importance in t = 2. Thus, this game is a twice repeated
contest in which the outcome in t = 1 does not a¤ect the symmetry of contestants in
t = 2. This case provides a benchmark against which incumbency advantages can
be compared.

The analysis of the incumbents problem is identical to that of a challenger. The
analysis begins in t = 2, where contestant i�s expected utility is

U IIVi2 �
1Z
v

pi2 (xi2;x�i2) v2dFV (v2)� xi2:

This objective function is strictly concave in xi2 given x�it, so the �rst order condition
de�nes a best response. This �rst order condition is

E (V )
P

j2N�i

xj2 
xi2 +

P
j2N�i

xj2

!2 � 1 = 0:

Note that there is no best response to
P

j2N�i
xj2 = 0; for any xi2 > 0 contestant

i obtains the prize with certainty, but has an incentive to reduce xi2 to a smaller
positive number. As such, the best response function of contestant i is well de�ned
on the interval (0;1), and is given by

xi2 (x�i2) =

8><>:
r P

j2N�i

xj2E (V )�
P

j2N�i

xj2 if
P

j2N�i

xj2 2 (0; E (V )]

0 if
P

j2N�i

xj2 2 (E (V ) ;1) :

The well-known, unique2 equilibrium is symmetric, and 8i 2 N expends

xIIVi2 � E (V ) (n� 1)
n2

:

Note that xIIVi2 is decreasing in n, and limits to zero. Denoting equilibrium aggre-
gate e¤ort expenditures in period t of the IIV case as RIIVt , RIIV2 =

X
i2N

xIIVi2 =

2See, for example, Yamazaki (2008).
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E(V )(n�1)
n

which is strictly less thanE (V ) and increasing in n. Note that limn!1R
IIV
2 =

E (V ). The aggregate e¤ort expenditures in imperfectly discriminating contests is
often referred to as rent dissipation, a reference to rent seeking applications in which
e¤ort expenditures are a social bad.

The equilibrium expected utility of contestant i in t = 2 is

E
�
U IIVi2

�
=

1Z
v

xIIVi2X
j2N

xIIVj2
v2dFV (v2)� xIIVi2 =

E (V )

n2
:

Note that E
�
U IIVi2

�
is decreasing in n and that limn!1E

�
U IIVi2

�
= 0. Contestants

have positive expected utility, despite not holding any private information. This
is attributable to the functional form of the contest success function, in which the
highest e¤ort level does not win with certainty, which induces contestants to expend
less e¤ort than E (V ). Since this equilibrium is symmetric, each of the contestants
has an equal chance of obtaining the prize.

In t = 1 contestant i�s expected utility is

U IIVi1 �
1Z
v

pi1 (xi1;x�i1) v1dFV (v1)� xi1 + E
�
U IIVi2

�
:

Since E
�
U IIVi2

�
does not depend on xt or v1, strategic considerations in t = 1 are

identical to those in t = 2, and the equilibrium e¤ort of contestant, xIIVi1 is identical
to that found in t = 2. That is, xIIVi1 = xIIVi2 , which also implies that RIIV1 = RIIV2
and that E

�
U IIVi1

�
= E

�
U IIVi2

�
. Further, each of the contestants has an equal chance

of obtaining the prize.

The sum of equilibrium e¤ort expenditures across t = 1; 2 , is

RIIV �
2X
t=1

RIIV =
2E (V ) (n� 1)

n
: (1)

Note that RIIV is increasing in n. Further limn!1E
�
U IIVi2

�
= 2E (V ).
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Notice that if contestants are know the value of the prize in either or both contests
prior to choosing their e¤ort expenditures, the ex ante results are unchanged. In
particular, if all contestants are informed of vt, it is easy to show that the equilibrium
e¤ort level, xINFit , is

xINFit =
vt (n� 1)

n2
:

But note that E
�
xINFit

�
= xIIVit . Thus, ex ante, the equilibrium predictions of the

IIV case are identical to the case in which contestants are symmetrically informed.

2.2 Intertemporal Dependence of Values (IDV)

Consider the case in which V2 is positively regression dependent on V1. Positive
regression dependence dictates that P (V2 � v2 j V1 = v1) be non-increasing in v1
for all v2.3 Intuitively, positive regression dependence implies as v1 increases, the
probability that V2 will be large increases. Positive regression dependence is a strictly
weaker concept of positive dependence than a¢ liated random variables, which is
used extensively in auction theory; a¢ liation implies positive regression dependence.4

Thus, the following results are also implied by a¢ liation between V1 and V2. Recall
that the marginal distributions of V1 and V2 are identical, and equal to FV . V1 and
V2 are jointly distributed with the joint density function f (v1; v2). The absolutely
continuous joint distribution function of these random variables is F (v1; v2). The
distribution function of V2, conditional on V1, is F (v2 j v1). Since V2 is positively
regression dependent on V1, F (v2 j v1) is non-increasing in v1 for any v2. To ensure
that E (V2 j v1) is strictly increasing in v1, I assume that for v01 > v1, F (v2 j v01) <
F (v2 j v1) for at least one v2 2 [v;1).

In t = 2 the incumbent has observed v1, which provides information regarding v2
in the form of E (V2 j v1). This introduces asymmetric information into the contest in

3See Lehmann (1966).
4For proof of this implication, see Yanagimoto (1972). This is also shown in de Castro (2007).

9



t = 2; the incumbent holds private information which allows her to form an updated
expectation regarding v2, while the challengers hold only public information. The
information structure of the subgame in t = 2 is studied in Wärneryd (2003), with
n = 2 and a perfectly informed contestant. What follows generalizes those results
since the informed contestant (the incumbent) need not be perfectly informed of v2
and there are n � 2 contestants.

As above, the incumbent is denoted as contestant I. The set of contestants who
did not win the prize in t = 1, the challengers, is C � N=I. C�j � N�j \C is the
set of challengers that does not include contestant j and xC � fxj2 : j 2 Cg is the
vector of e¤ort levels chosen by the challengers. The incumbent�s expected utility
now depends on the privately observed v1, and is given by

U IDVI2 (v1) �
1Z
v

pI2 (xI2 (v1) ;xC) v2dF (v2 j v1)� xI2 (v1) :

This expected utility is strictly concave in xI2 (v1), given xC such that the �rst order
condition is su¢ cient to establish a maximum. The partial derivative with respect
to xI2 (v1) is P

j2C
xj2 

xI2 (v1) +
P
j2C

xj2

!2E (V2 j v1)� 1:

Any xI2 (v1) > 0 renders this expression negative if
P

j2C xj2 > E (V2 j v1) : Thus,
if the summed e¤ort of the challengers is greater than the incumbent believes the
prize is worth, the incumbent�s best response is to expend no e¤ort.. If

P
j2C xj2 �

E (V2 j v1) then there exists a xI2 (v1) > 0 for which the partial derivative is equal
to zero. Since E (V2 j v1) is strictly monotonically increasing in v1,

P
j2C xj2 �

E (V2 j v1) will hold with equality for exactly one v1 if
P

j2C xj2 � E (V2 j v). Thus,
if
P

j2C xj2 � E (V2 j v), then the expression
P

j2C xj2 = E (V2 j v1) de�nes a thresh-
old value of v1 above which the incumbent will expend positive e¤ort. Since of
E (V2 j v1) is monotonic in v1, its inverse, s (�), is well de�ned on [E (V2 j v) ;1), and
the threshold value of v1 that the challenger must observe in order for xI2 (v1) � 0

10



to be a best response to
P

j2C xj2 is

q

 X
j2C

xj2

!
�

8>><>>:
s

 P
j2C

xj2

!
if

P
j2C

xj2 � E (V2 j v)

v if
P
j2C

xj2 < E (V2 j v) :

The best response function of the incumbent, which is de�ned on the domain (0;1),
can then be expressed as

xI2 (v1) =

8>>>><>>>>:
rP

j2C
xj2E (V2 j v1)�

P
j2C

xj2 if q

 P
j2C

xj2

!
� v1

0 if q

 P
j2C

xj2

!
> v1:

In equilibrium, the ex ante expected e¤ort expenditure of the IDV incumbent is
denoted as E

�
xIDVI2 (V1)

�
.

The expected utility of contestant j 2 C is

U IDVj2 � E

0B@ 1Z
v

xj2V2
xI2 (V1) + xj2 +

P
k2C�j

xk2

1CA� xj2:
As before, the strict concavity of this objective function in xj2 given x�it implies that
the �rst order condition yields a maximum. This �rst order condition is

E

0BBBBB@
 
xI2 (V1) +

P
k2C�j

xk2

!
v2 

xI2 (V1) + xj2 +
P

k2C�j
xk2

!2
1CCCCCA� 1 = 0:

The (n� 1) challengers each expend the same quantity of e¤ort in equilibrium. To
see this, consider the case in which contestant m 2 C optimally expends xm2 > 0
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while contestant l 2 C optimally expends xl2 > xm2 Since xl2 > xm2 > 0 the �rst
order conditions for contestants l and m hold with equality such that

E

0BBBB@
 
xI2 (V1) +

P
k2C=fl;mg

xk2 + xl2

!
v2�

xI2 (V1) +
P
k2C

xk2

�2
1CCCCA = E

0BBBB@
 
xI2 (V1) +

P
k2C=fl;mg

xk2 + xm2

!
v2�

xI2 (V1) +
P
k2C

xk2

�2
1CCCCA :

But this is a contradiction since xl2 > xm2. Thus, if challengers are optimally ex-
pending a positive amount of e¤ort, they each expend the same amount of e¤ort.
Likewise, the case in which one of the challengers is optimally expending zero ef-
fort implies that this is the optimal choice for the remaining challengers as well.
The (n� 1) challengers can not expend zero e¤ort in an equilibrium, since the best
response of the incumbent does not exist when

P
j2C xj2.

The equilibrium e¤ort of a challenger in the IDV case is denoted by xIDVC2 , and
the sum of the challengers�e¤ort expenditures is equal to xIDVC2 (n� 1). Utilizing the
incumbent�s best response function simpli�es the �rst order condition of a challenger.
The resulting equation relates the equilibrium e¤ort level of a challenger to the
expected equilibrium e¤ort level of the incumbent, where 1B is the indicator function
that is equal to one if B is true, and zero otherwise,

xIDVC2 =

�
1

(1 + FV (q (xIDVC2 (n� 1))) (n� 2))

�
E
�
xIDVI2 (V1)

�
(2)

+

�
n� 2

(n� 1) (1 + FV (q (xIDVC2 (n� 1))) (n� 2))

�
E
�
V21V1�q(xIDVC2 (n�1))

�
:

Note that this is not a closed form solution for xIDVC2 , as it appears on both sides of the
equation. Plugging in the best response function of the incumbent and simplifying
(2) further yields the following equation, which characterizes equilibrium in t = 2

n� FV
�
q
�
xIDVC2 (n� 1)

��
(3)

=

�
(n� 2)

xIDVC2 (n� 1)

�
E
�
V21V1�q(xIDVC2 (n�1))

�
+

s
(n� 1)
xIDVC2

E
�p

E (V2 j V1)1V1�q(xIDVC2 (n�1))

�
:
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Consider the special case where xIDVC2 (n� 1) < E (V2 j v). In this case there
is no v1 for which the incumbent believes the challengers are expending more e¤ort
than the prize is worth and xI2 (v1) > 0 for any v1. Following Wärneryd (2003), I
call this an interior equilibrium. In such a situation (2) and (3) become

E
�
xIDVI2 (V1)

�
= xIDVC2 ;

xIDVC2 =
(n� 1)

�
E
�p

E (V2 j V1)
��2

n2
:

Thus, if xIDVC2 (n� 1) � E (V2 j v), then there is an explicit solution for the equilib-
rium of this subgame. A su¢ cient condition for the existence of such an interior
equilibrium is0@(n� 1)E

�p
E (V2 j V1)

�
n

1A2

� E (V2 j v) :

This su¢ cient condition restricts attention to a narrow set of distribution functions,
and a more general result is desirable.

If xIDVC2 (n� 1) > E (V2 j v) the incumbent does not expend positive e¤ort for
some realizations of v1. Consequently, there is no closed form solution for equilib-
rium. Furthermore, since the best response function of the incumbent is not de�ned
at
P

j2C xj2 = 0, the Banach �xed point theorem cannot be utilized to guarantee
the existence or uniqueness of equilibrium in this subgame. However, the following
result holds.

Proposition 1 There is a unique Nash equilibrium in t = 2 of the IDV case.

Proof. See Appendix A.

If the unique equilibrium is interior, then E
�
xIDVI2 (V1)

�
= xIDVC2 , and x

IDV
I2 (V1) >

0, for all v1. When the equilibrium is not interior, there are values of v1 for which
the incumbent will not expend any e¤ort, which might suggest that a lack of an
interior equilibrium would depress E

�
xIDVI2 (V1)

�
relative to xIDVC2 : Accordingly, the

13



expected e¤ort expenditure of the incumbent relative to a challenger is of interest.
The following result refutes the line of thinking outlined above.

Proposition 2 In the IDV case, the ex ante expected e¤ort expenditure of the in-
cumbent is weakly greater than that of a challenger. If n = 2, or there is an interior
equilibrium, the incumbent�s ex ante expected e¤ort level is equal to that of a chal-
lenger, otherwise the inequality is strict.

Proof. See Appendix A.

The intuition behind this result relies on the fact that the incumbent�s best
response function is increasing in v1; she expends less e¤ort than a challenger when
v1 is low, and more when v1 is high. Consequently, a challenger is more likely to
obtain the prize when v1 is low, so that the expected value of the prize conditional
on having been obtained by a challenger is lower than E (V ). Challengers reduce
their e¤ort expenditures relative to the incumbent to account for this. When the
equilibrium is not interior incumbents do not expend any e¤ort for low values of v1
so that a challenger obtains the prize with certainty, providing challengers a stronger
incentive to reduce their e¤ort expenditures than in an interior equilibrium. That is,
the presence of asymmetric information introduces a winner�s curse for challengers,
in which obtaining the prize depresses a challengers beliefs regarding its worth. A
similar winner�s curse arises in a �rst-price, sealed-bid auction with the t = 2 IDV
information structure.5

The lottery contest success function utilized in this model awards the prize to a
contestant with probability equal to her proportion of aggregate e¤ort expenditures
in the contest. SinceE

�
xIDVI2 (V1)

�
� xIDVC2 , the incumbent has, ex ante, the (weakly)

highest proportion of aggregate e¤ort. Recall that E
�
xIDVI2 (V1)

�
> xIDVC2 when the

equilibrium in not interior and n = 2. As such, the following result is somewhat
counterintuitive.

In equilibrium the incumbent will expend more e¤ort than a challenger when v1
is high, such that, ex ante, she is expected to expend more than a challenger, despite

5See Engelbrecht-Wiggans et al. (1983) and Milgrom and Weber (1982).
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choosing xI2 (v1) = 0 if v1 � q
�
xIDVC2 (n� 1)

�
. Further, in equilibrium the incumbent

obtains the prize with positive probability only when v1 > q
�
xIDVC2 (n� 1)

�
. Thus,

there are two e¤ects in�uencing the ex ante probability of the incumbent obtaining
the good in t = 2. I �nd the following, which holds in an interior equilibrium as
well.

Proposition 3 In the IDV case the incumbents ex ante expected probability of ob-
taining the prize is strictly less than that of a challenger.

Proof. See Appendix A.

This result yields an interesting insight into the e¤ect of an informed incumbent.
In particular, incumbents are less entrenched under this informational asymmetry
than in the IIV case; the incumbent is ex ante less likely to obtain the prize in
t = 2. The intuition is that, in equilibrium the incumbent obtains the prize with
positive probability only when v1 > q

�
xIDVC2 (n� 1)

�
: Further, since the incumbent

only expends more e¤ort than a challenger when xIDVC2 � (n� 1)E (V2 j v1) =n2, a
challenger will obtain the prize with high probability when v1 is low.

Contrasting this result with the analogous �ndings in standard auction formats
is worthwhile. As mentioned above, the information structure in t = 2 of the IDV
case has been studied in the context of �rst-price sealed-bid auctions in Engelbrecht-
Wiggans et al. (1982) and in the context of all-pay auctions in Grosskopf et al.
(2009). In both of these auction formats, the ex ante probability that the informed
bidder wins the auction is 50%, regardless of the number of bidders.

To ascertain the e¤ect of the assumption that V2 is positive regression dependant
on V1, consider the equilibrium e¤ort expenditure of challengers in the IDV case to
that of contestants in t = 2 of the IIV case. If the equilibrium is interior, notice
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that Jensen�s Inequality yields

E
�
xIDVI2 (V1)

�
= xIDVC2

=
(n� 1)

�
E
�p

E (V2 j V1)
��2

n2

<
(n� 1)E (V )

n2

= xIIVi2 :

Since E
�
xIDVI2 (V1)

�
= xIDVC2 < xIIVi2 , the expected revenue of such an interior equi-

librium, RIDV2 , is strictly less than RIIV2 . A more general result follows.

Proposition 4 The equilibrium e¤ort expenditure of a contestant in t = 2 of the
IIV case is strictly greater than the equilibrium e¤ort expenditure of a challenger in
t = 2 of the IDV case if and only if

(n� 2)
(n� 1) (n� FV (q (B)))

E
�
V21V1�q(B)

�
(4)

+
(n� 1)

p
E (V )

n (n� FV (q (B)))
E
�p

V21V1�q(B)

�
<

E (V ) (n� 1)
n2

;

where B � E(V )(n�1)2
n2

= xIIVi2 (n� 1).

Proof. See Appendix A.

Equation (4), which holds trivially when n = 2, states that if the IDV incumbent
were to best respond to the equilibrium strategy of the challengers in the IIV case
(
P

j2C xj2 = xIIVi2 (n� 1)), then the best response of the IDV challengers is to re-
duce their e¤ort expenditures relative to the IIV case. Suppose the IDV challengers
expend

P
j2C xj2 = xIIVi2 (n� 1). Since, in this scenario, the incumbent�s equilib-

rium e¤ort expenditure is monotonically increasing in v1 when v1 � q
�
xIIVi2 (n� 1)

�
,

and she expends more e¤ort than xIIVi2 only when xIIVi2 � (n� 1)E (V2 j v1) =n2, a
challenger who expends xIIVi2 is more likely to obtain the prize when it has a low
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value. As discussed above, the expected value of the prize, conditional on a chal-
lenger having obtained it, is then less than E (V ). As such, it is reasonable to
assume that risk-neutral challengers shade their e¤ort levels below xIIVi2 , as required
by (4). It is important to note that (4) is not a restrictive assumption; for example
the Pareto, Gamma, Uniform and Triangular distributions all satisfy if for a broad
range of parameterizations. In what follows, I assume that (4) is satis�ed.

Interestingly, the comparison between E
�
xIDVI2 (V1)

�
and xIIVi2 depends on n and

the distribution function FV . If there is an interior equilibrium or if n = 2, then
E
�
xIDVI2 (V1)

�
= xIDVC2 < xIIVi2 . When the equilibrium in not interior and n > 2, the

incumbent expends E
�
xIDVI2 (V1)

�
> xIIVi2 when

xIIVi2 � xIDVC2 < (n� 2)xIDVC2 FV
�
q
�
xIDVC2 (n� 1)

��
�(n� 2)
(n� 1)E

�
V21V1�q(xIDVC2 (n�1))

�
:

Since the equilibrium is not interior if E
�
xIDVI2 (V1)

�
> xIIVi2 , and there is no closed

form solution for such an equilibrium, I am unable to give further conditions. How-
ever, examples demonstrate that E

�
xIDVI2 (V1)

�
> xIIVi2 in many cases. For example,

if V1 = V2 � U (1; 11), and n = 200, then E
�
xIDVI2 (V1)

�
= 0:79, while xIIVi2 = 0:03.

As mentioned above, the information structure in t = 2 of the IDV case has been
studied in a variety of auction formats. Engelbrecht-Wiggans et al. (1983) �nds that
this asymmetric information structure guarantees that the uninformed bidders have
expected payo¤ of zero in any equilibrium of any standard auction format. Further,
in all-pay and �rst-price auctions, the informed bidder earns a positive information
rent. Since the expected payo¤o¤bidders in the symmetric information structure in
which no bidders hold private information is zero (as in the IIV case), this information
rent is extracted from the seller.6

Comparing the ex ante expected utility of contestants in t = 2 of the IIV and IDV
cases is of interest as it reveals the e¤ect of information asymmetry. Additionally,
comparing these results to those found in all-pay and �rst-price auctions yields insight
into the e¤ect of utilizing an imperfectly discriminating contest success function.
Note that the expected utility of a contestant in t = 2 of the IIV case is E

�
U IIVi2

�
=

6See Grosskopf et al. (2009) and Milgrom and Weber (1982).
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E (V ) =n2 > 0, whereas in the analogous �rst-price or all-pay auction her expected
utility would be zero.7 This is attributable to the imperfectly discriminating nature
of the lottery contest considered.

Notice that, in equilibrium, the expected utility of a challenger in the IDV case
can be written as

E
�
U IDVC2

�
=

1

(n� 1)2
E
�
V21V1�q(xIDVC2 (n�1))

�
+
xIDVC2

�
1� FV

�
q
�
xIDVC2 (n� 1)

���
(n� 1) :

Since xIDVC2 > 0 in equilibrium, E
�
U IDVC2

�
> 0. Since the expected utility of un-

informed bidders in all-pay auctions is zero, the imperfectly discriminating contest
success function allows IDV challengers to earn a positive expected utility, despite
the information asymmetry. While the presence of asymmetric information does not
reduce E

�
U IDVC2

�
to zero, I have the following result.

Proposition 5 If (4) is satis�ed, then the ex ante expected utility of a challenger is
strictly less in the IDV case than the IIV case.

Proof. See Appendix A.

In contrast to the aforementioned results in all-pay and �rst-price auctions, an
information asymmetry makes the challengers worse o¤. Notice that while bidders
who do not observe a signal regarding the value of the good in an all-pay or �rst
price auction are indi¤erent between the information structures in t = 2 of the IDV
and IIV case, the same is not true in the lottery contest.

Next, I look at the expected utility of the incumbent. Utilizing (3) and the best
response function of the incumbent, the ex ante equilibrium expected utility of the
incumbent can be written as

E
�
U IDVI2

�
= E (V ) +

(n� 3)
(n� 1)E

�
V21V1�q(xIDVC2 (n�1))

�
�xIDVC2

�
(n+ 1) + FV

�
q
�
xIDVC2 (n� 1)

��
(n� 3)

�
:

7See Baye (1996) for an analysis of all-pay auctions under complete information.
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I can now say the following.

Proposition 6 If (4) is satis�ed the ex ante expected utility of the incumbent is
strictly greater in the IPV case than in the IIV case.

Proof. See Appendix A.

The IDV incumbent earns a positive information rent. Since the challengers
are ex ante worse o¤ in the IDV case, at least some of this information rent is
extracted from them. The e¤ect of the information asymmetry on aggregate e¤ort
expenditures in t = 2 of the IDV case is closely related since for any v1, it must be
the case that the sum of e¤ort expenditures and realized payo¤s of the contestants
equal E (V2 j v1). In expectation, E

�
U IDVI2

�
+ E

�
U IDVC2

�
(n� 1) + RIDV2 = E (V ) :

As such, E
�
U IDVI2

�
+ E

�
U IDVC2

�
> 2E

�
U IIVi2

�
, would indicate that RIDV2 < RIIV2 .

The following result establishes this.

Proposition 7 If (4) is satis�ed, ex ante expected e¤ort expenditures are strictly
lower in the IDV case than in the IIV case.

Proof. See Appendix A.

This result shows that the information rent earned by the IDV incumbent is
extracted from the challengers, and by reducing aggregate e¤ort expenditures in
t = 2. The ex ante expected value of obtaining the prize in t = 1 is then E (V ) +
E
�
U IDVI2

�
� E

�
U IDVC2

�
> E (V ). Thus, contestants in t = 1 of the IDV case have

an increased incentive to obtain the prize.

In t = 1 the n contestants are symmetric. None of them hold private information,
although they are aware that privately observing v1 will, in expectation earn them
an information rent. The expected utility of contestant i in t = 1 is:

U IDVi1 � pi1 (xI2 (v1) ;xC)
�
E (V ) + E

�
U IDVI2

�
� E

�
U IDVC2

��
�xi1 + E

�
U IDVC2

�
This problem is strategically equivalent to a complete information contest with a
prize of E (V ) + E

�
U IDVI2

�
� E

�
U IDVC2

�
. As in the IIV case, there is a unique
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equilibrium which is symmetric. The equilibrium e¤ort expenditure of contestant i
in t = 1 is

xIDVi1 �
�
E (V ) +

�
E
�
U IDVI2

�
� E

�
U IDVC2

���
(n� 1)

n2

8i 2 N.

Since E
�
U IDVI2

�
�E

�
U IDVC2

�
> 0, xIDVi1 > xIIVi1 , which implies that RIDV1 > RIIV1 .

The sum of ex ante expected e¤ort expenditures across both periods is RIDV �P2
t=1R

IDV
t . Since, RIDV2 < RIIV2 , the e¤ect of the information asymmetry on total

e¤ort expenditures across the two periods is of interest.

Proposition 8 When the equilibrium in t = 2 of the IDV case is not interior , total
e¤ort expenditures in the IPV case, RIDV , strictly exceed those of the IIV case. If
the equilibrium in t = 2 of the IDV case is interior then RIDV = RIIV :

Proof. See Appendix A.

It is worth noting that if the game were modi�ed such that in t = 1, contestants
were to compete for the chance to privately observe v1 without obtaining it, that this
result holds. That is, if the contest in t = 1 is over the acquisition of information, the
result is the same. Notice that if v = 0, then there can not be an interior equilibrium,
and RIDV > RIIV . Since RIDV � RIIV , the reduction of e¤ort expenditures in t = 2
of the IDV case, are at least o¤set by the increase in e¤ort expenditures in t = 1.
Interestingly, in a twice repeated �rst-price or all-pay auction, analogous to the IIV
and IDV cases studied here, revenue summed across the two periods is, ex ante,
unchanged between the two information structures. The intuition is that in t = 2
of an IDV information structure the uninformed bidders earn an expected payo¤ of
zero, while the informed bidder earns a positive information rent. In t = 1 the value
of winning the auction is this information rent plus E (V ). The revenue t = 1 is
equal to this value, because the game in t = 1 is a complete information auction in
which the equilibrium expected utility is equal to zero.

Further, RIDV � RIIV implies that the ex ante expected utility of a contestant in
t = 1 of the IDV case is (weakly) less than in the IIV case. As such, if a contestant
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were o¤ered the choice between the information structures in the IDV and IIV case,
she would weakly prefer the IIV case.

Recall that as n increases in the IIV case, aggregate e¤ort expenditures increase
in both periods, and so, overall. Likewise, the equilibrium expected utility of con-
testants is decreasing in n in both periods and overall. Also, the equilibrium proba-
bility of obtaining the prize in each period, 1=n, is decreasing in n as well. Consider
the e¤ect of an increase in n on behavior in the IDV case. If the equilibrium in t = 2
of the IDV case is not interior, then the equilibrium is characterized by the implicit
function (3). Totally di¤erentiating (3) yields the following result.

Proposition 9 The equilibrium e¤ort expenditure of a challenger and of the in-
cumbent in the IDV case is decreasing in n. The ex ante expected aggregate e¤ort
expenditures in t = 2 is increasing in n.

Proof. See Appendix A.

In t = 1 of the IDV case the equilibrium is analogous to that of the IIV case, ex-
cept with an expected value of obtaining the prize equal toE (V )+

�
E
�
U IDVI2

�
� E

�
U IDVC2

��
.

It is therefore straightforward to show that the comparative statics in t = 1 of the
IDV case are consistent with those of the IIV case.

Contrasting this result with all-pay, �rst-price and second-price auctions reveals
signi�cant di¤erences. In an asymmetric information structure as in IDV case, equi-
librium bidding strategies and revenue predictions are invariant to the number of
bidders in �rst-price, all-pay and second-price auctions. In an imperfectly discrimi-
nating contest, this is not the case.

Another interesting exercise is to vary the level of positive dependence between
V1 and V2. The value of information has garnered considerable attention in the lit-
erature, mostly in the context of decision problems.8 These results do not generalize
to games, although the value of information in zero sum games has been, dealing

8See Blackwell (1953).
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with a �nite partition of the state space has been studied. Unfortunately, this setup
does not directly apply to this model.

However, the fact that there is a unique Nash equilibrium for the contest with
asymmetric information suggests that comparing equilibrium payo¤s under di¤erent
information structures may yield results. Consider two information structures, de-
�ned by their joint distribution functions: F (v1; v2) and G (v1; v2) where these two
distribution functions have identical marginals, namely FV . Kimeldorf and Samp-
son (1987) say that G (v1; v2) is more positively quadrant dependent than F (v1; v2)
if G(v1; v2) � F (v1; v2) for all (v1; v2) 2 R2. In this positive dependence ordering,
V1, V2 are more positively dependent under G(v1; v2) than F (v1; v2). Since the equi-
librium need not be interior, comparing the equilibria under G(v1; v2) than F (v1; v2)
yields ambiguous results. As such I am unable to give a general result regarding the
a¤ect of changes in the quality of signal.

I next introduce an example in which there is a particularly tractable way to vary
the informativeness of v1. In this example, n = 2, and the value of the prize in period
two is uniformly distributed on [v; v]. It is also assumed that v < 7v. Let a second
random variable, E, be uniformly distributed on [��; �], with � > 0. To ensure that
� is not so high as to render the signal devoid of information, it is also assumed that
� < v � v. The signal that the incumbent receives is then V1 = V2 + E. Thus, the
signal received by the incumbent must be within � of the actual value of the prize.
Examining how equilibrium e¤ort changes in response to changes in � is equivalent
to observing the e¤ect of changes in signal quality on equilibrium e¤ort. Note that
this example is not consistent with the model outlined above in that the distribution
of V1 is not the same as the distribution of V2. However, it does yield some insight
into how the quality of information a¤ects equilibrium e¤ort levels. Since v < 7v,
the equilibrium is interior equilibrium. The closed form of this equilibrium is

xIDVC2 =

�
E
�p

E (V2 j v1)
��2

4

=
2
�
4v

5
2 + 4v

5
2 � 4v2

p
v � � + 3v

p
v � ��

�
15 (v � v) �

+
2
�
4v2
p
v + � � 3v�

p
v + � + �2

�p
v � � +

p
v + �

��
15 (v � v) � :
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The partial derivative of this expression with respect to � yields

@xIDVC2

@�
=

8v2
p
v � � � 8v 52 + 4v�

p
v � � � 4v�

p
v + �

15 (v � v) �

+
8v2
p
v + � � 8v 52 + 3�2

�p
v � � +

p
v + �

�
15 (v � v) �

This partial derivative is negative, so equilibrium e¤ort levels increase as the quality
of the signal decreases. Further, xIDVC2 converges to xIIVi2 as � increases. Since
n = 2, xIDVC2 = E

�
xIDVI2 (V1)

�
; aggregate e¤ort expenditures converge to RIIV2 . This

is consistent with the result that the presence of an information asymmetry decreases
e¤ort in the second period. As the value of this signal decreases, equilibrium e¤ort
levels get closer and closer to xIIVi2 .

Next, consider the problem faced by the contest designer. Suppose that this
contest designer can choose between two types of information revelation policies.
First, she can publicly announce the value of the prize in contest, either before
or after contestants have chosen their e¤ort levels. Notice that, ex ante, both of
these policies will result in expected equilibrium e¤ort expenditures as in the IIV
case. Second, she can privately reveal this value to the contestant who obtained it
(the IDV case). If the contest designer seeks to minimize e¤ort expenditures, then
Proposition 8 implies that she will adopt a policy of publicly revealing the value of
the prize before or after the contestants choose their e¤ort levels. Adopting such
a policy ensures that, ex ante, e¤ort expenditures are expected to correspond to
the IIV case. If the contest designer seeks to maximize e¤ort expenditures she will
choose to adopt a policy of privately revealing the value of the prize to the contestant
who obtains the prize. Interestingly, this is the opposite of the predictions in a one-
shot asymmetric information contest. As such, taking account of the incentives to
acquire information is important when considering optimal information revelation
policy. In rent seeking applications, this result o¤ers support for the view that there
is social bene�t to public disclosure of information.

3 Conclusion

When contestants compete in a series of imperfectly discriminating contests, obtain-
ing a prize in an early period may provide information regarding the value of the
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prize in later periods. I examine the case where the values of the prizes are positively
related in a twice repeated imperfectly discriminating contest. If the incumbent pri-
vately observes the value of the prize in the �rst contest, then she is better informed
than the challengers in the subsequent contest.

I �nd that in the second contest, the incumbent has a strictly lower ex ante
probability of obtaining the prize than a challenger, despite expending (weakly)
more e¤ort than a challenger in expectation. The incumbent expends low e¤ort for
low values of the prize and high e¤ort for high values of the prize; the incumbent�s
low probability of obtaining the prize when its value is low is such that the ex ante
probability of obtaining the prize is lower than that of a challenger.

Since the incumbent expends low e¤ort for low values of the prize, the challengers
face an analogue of the winner�s curse, and reduce their second period e¤ort expen-
ditures relative to the symmetric information case as a result. This is su¢ cient to
reduce aggregate e¤ort expenditure in the second contest relative to the IIV case, de-
spite the fact that the incumbent�s expected e¤ort expenditures may have increased
relative to the IIV case.

The incumbent�s ex ante expected utility is strictly higher than in the IIV case;
the incumbent obtains an information rent. This information rent creates an in-
creased incentive to obtain the prize in the �rst contest, which increases aggregate
e¤ort expenditures in the �rst contest. This incentive is su¢ ciently high to increase
total e¤ort expenditure over both contests, o¤setting the decrease in expected e¤ort
expenditure in t = 2 caused by the information asymmetry.
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Appendix A

Proposition 1 There is a unique Nash equilibrium in t = 2 of the IDV case.

Proof. De�ne the function

g(x) � (n� 2)
x (n� 1)

q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

+

r
(n� 1)
x

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

+FV (q (x (n� 1)))� n:

Notice that g(x) = 0 satis�es (3), which de�nes an equilibrium. Note that q( v
n�1) =

v.

g

�
v

n� 1

�
=

s
(n� 1)�

v
n�1
� 1Z
v

p
E (V2 p v1)dFV (v1)� n

=
(n� 1)
p
v

1Z
v

p
E (V2 p v1)dFV (v1)� n

Now, suppose that g( v
n�1) � 0. In this case,

�
(n�1)

�
E
�p

E(V2jV1)
��

n

�2
� v �

E (V2 j v). That is, there is interior equilibrium. If g( v
n�1) > 0; there need not

be an interior equilibrium. However,

lim
x!1

g(x) = 1� n < 0:

Thus, either there is an interior equilibrium, or the intermediate value theorem as-
sures at least one �nite value of x where g(x) = 0. If there is an interior equilibrium,
then it has a unique closed form solution. To prove the uniqueness of a non-interior
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equilibrium note that:

@g(x)

@x
=

(n� 2) (n� 1)
1Z
v

v2f(q (x (n� 1)) ; v2)dv2q0 (x (n� 1))

x (n� 1)
�fV (q (x (n� 1)))q0 (x (n� 1)) (n� 1)2

+fV (q (x (n� 1)))q0 (x (n� 1)) (n� 1)

�

p
(n� 1)

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

2x
3
2

�

(n� 2)
q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

x2 (n� 1) :

If there is not an interior equilibrium, E (V2 j q (x (n� 1))) = x (n� 1). Using this
to reduce the above expression yields:

@g(x)

@x
= �

p
(n� 1)

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

2x
3
2

�

(n� 2)
q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

x2 (n� 1) :

Since this expression is negative, g(x) is monotonically decreasing in x, which means
that the equilibrium whose existence was shown above is unique.

Proposition 2 In the IDV case, the ex ante expected e¤ort expenditure of the in-
cumbent is weakly greater than that of a challenger. If n = 2, or there is an interior
equilibrium, the incumbent�s ex ante expected e¤ort level is equal to that of a chal-
lenger, otherwise the inequality is strict.
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Proof. Rearranging (3), which characterizes equilibrium e¤ort yields:

xIDVC2 � E
�
xIDVI2 (v1)

�
=

�
n� 2
n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
�xIDVC2 FV

�
q
�
xIDVC2 (n� 1)

��
(n� 2)

Note that the right hand side of this equation is equal to zero if n = 2; or if the
equilibrium in interior (q

�
xIDVC2 (n� 1)

�
= v), yielding the desired result. Now

suppose the equilibrium is not interior, n > 2, and that xIDVC2 � E
�
xIDVI2 (v1)

�
. This

implies that:�
n� 2
n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
� xIDVC2 FV

�
q
�
xIDVC2 (n� 1)

��
(n� 2) :

This simpli�es to

E
�
V2 j V1 � q

�
xIDVC2 (n� 1)

��
� xIDVC2 (n� 1)
= E

�
V2 j q

�
xIDVC2 (n� 1)

��
:

Since E (V2 j v1) is strictly increasing in v1, this is a contradiction.

Proposition 3 When V2 is positively regression dependent on V1, the incumbents ex
ante expected probability of obtaining the prize is strictly less than that of a challenger.

Proof. First consider the case where n = 2, or there is an interior equilibrium. Re-
call that, when n = 2, or there is an interior equilibrium, xIDVC2 = E

�
xIDVI2 (v1)

�
.

In this case, note that the probability contestant j 2 C will obtain the prize,
pj2 (xI2 (v1) ;xC) =

xj2�
xi2(v1)+xj2+

P
k2C�j

xk2

� , is strictly convex in xI2 (v1). Jensen�s

Inequality yields:

E (pj2 (xI2 (v1) ;xC)) > pj2
�
ExIDVI2 (v1) ;xC

�
:

Further, since pI2 (xi2 (v1) ;xC) =
xI2(v1)

(xI2(v1)+
P
k2C xk2)

is strictly concave in xI2 (v1),

Jensen�s Inequality also tells us that:

E
�
pI2
�
xIDVI2 (v1) ;xC

��
< pI2

�
E
�
xIDVI2 (v1)

�
;xC

�
:
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Dividing both sides of xIDVC2 = E
�
xIDVI2 (v1)

�
by E

�
xIDVI2 (v1)

�
+ (n� 1)xIDVC2 , and

using the above inequalities yields:

E (pj2 (xI2 (v1) ;xC)) > pj2
�
E
�
xIDVI2 (v1)

�
;xC

�
= pI2

�
E
�
xIDVI2 (v1)

�
;xC

�
> E (pI2 (xI2 (v1) ;xC)) :

When n > 2 and there is not an interior equilibrium xIDVC2 � E
�
xIDVI2 (v1)

�
. The ex

ante probability that the incumbent obtains the good is given by

E (pI2 (xI2 (v1) ;xC))

=
�
1� FV

�
q
�
xIDVC2 (n� 1)

���
�
q
xIDVC2 (n� 1)E

 
1p

E (V2 j V1)
1V1�q(xIDVC2 (n�1))

!
:

The ex ante probability that a challenger j 2 C obtains the good is given by

E (pj2 (xI2 (v1) ;xC))

=
FV
�
q
�
xIDVC2 (n� 1)

��
(n� 1)

+

s
xIDVC2

(n� 1)E
 

1p
E (V2 j V1)

1V1�q(xIDVC2 (n�1))

!
:

Suppose that E (pj2 (xI2 (v1) ;xC)) < E (pI2 (xI2 (v1) ;xC)). This simpli�es to

1� 1

n ((1� FV (q (xIDVC2 (n� 1)))))

>
q
xIDVC2 (n� 1)E

 
1p

E (V2 j V1)
jV1 � q

�
xIDVC2 (n� 1)

�!
> 1:

This is a contradiction.

Proposition 4 The equilibrium e¤ort expenditure of a contestant in t = 2 of the
IIV case is strictly greater than the equilibrium e¤ort expenditure of a challenger in
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t = 2 of the IDV case if and only if

(n� 2)
(n� 1) (n� FV (q (B)))

E
�
V21V1�q(B)

�
+
(n� 1)

p
E (V )

n (n� FV (q (B)))
E
�p

V21V1�q(B)

�
<

E (V ) (n� 1)
n2

;

where B � E(V )(n�1)2
n2

= xIIVi2 (n� 1).

Proof. Notice that, when n = 2, Jensen�s inequality implies that (4) holds. Fur-

ther, notice that (4) states that g
�
E(V )(n�1)

n2

�
< 0 (g (x) was de�ned in the proof of

Proposition 1). Recall that in the proof of Proposition 1 it was shown that g (x)
is a monotonically decreasing function, and that g (x) = 0 de�nes the unique equi-
librium of the game. So if xIDVC2 < xIIVi2 = E(V )(n�1)

n2
, then g

�
xIDVC2

�
> g

�
xIIVi2

�
=

g
�
E(V )(n�1)

n2

�
. Since g

�
xIDVC2

�
= 0 in equilibrium, g

�
xIIVi2

�
= g

�
E(V )(n�1)

n2

�
< 0,

which is the condition given in (4). To see that (4) implies xIDVC2 < xIIVi2 , con-

sider g
�
xIIVi2

�
= g

�
E(V )(n�1)

n2

�
< 0. Since g

�
xIDVC2

�
= 0, and g (x) is monotonically

decreasing in x, it must be the case that xIDVC2 < xIIVi2 .

Proposition 5 If (4) is satis�ed, then the ex ante expected utility of a challenger is
strictly less in the IDV case than the IIV case.

Proof. De�ne the following function:

h(x) � 1

(n� 1)2
E
�
V21V1�q(x(n�1))

�
+
x (1� FV (q (x (n� 1))))

(n� 1) :

Note that:

h0(x) =
1

(n� 1)

1Z
v

v2f (q (x (n� 1)) ; v2) q0 (x (n� 1)) dv2

+
(1� FV (q (x (n� 1))))

(n� 1) �
1Z
v

xf (q (x (n� 1)) ; v2) q0 (x (n� 1)) dv2
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But if x (n� 1) > v, then x (n� 1) = E (V2 p q (x (n� 1))). Plugging this in simpli-
�es this expression down to the following:

h0(x) � (1� FV (q (x (n� 1))))
(n� 1) > 0

Since h0(x) > 0, and (4) is satis�ed my assumption, xIDVC2 < E(V )(n�1)
n2

= xIIVi2 . Thus,
h
�
xIDVC2

�
< h(E(V )(n�1)

n2
). Note that (where the second line follows from the de�nition

of conditional probability):

h

�
E (V ) (n� 1)

n2

�
=

1

(n� 1)2

1Z
v

q(B)Z
v

v2f(v1; v2)dv1dv2 +
E (V )

n2
(1� FV (q (B)))

=
FV (q (B))

(n� 1)2
E (V2 j V1 � q (B)) +

E (V2)

n2
(1� FV (q (B)))

� FV (q (B))

(n� 1)2
E (V ) (n� 1)2

n2
+
E (V2)

n2
(1� FV (q (B)))

=
E (V )

n2
FV (q (B)) +

E (V2)

n2
(1� FV (q (B)))

=
E (V )

n2
:

Proposition 6 If (4) is satis�ed the ex ante expected utility of the incumbent is
strictly greater in the IPV case than in the IIV case.

Proof. Notice that E
�
U IIVi2

�
< E

�
U IDVI2

�
when

E (V ) +

�
n� 3
n� 1

�
E
�
V21V1<q(xIDVC2 (n�1))

�
�xIDVC2 (n+ 1)� xFV

�
q
�
xIDVC2 (n� 1)

��
(n� 3) > E (V )

n2
:

This expression can be rewritten as�
E
�
U IIVi2

�
� E

�
U IDVC2

��
(n� 1) > RIDV2 �RIIV2 :

Similarly, E
�
U IIVi2

�
> E

�
U IDVI2

�
when�

E
�
U IIVi2

�
� E

�
U IDVC2

��
(n� 1) < RIDV2 �RIIV2 :
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Likewise, E
�
U IIVi2

�
= E

�
U IDVI2

�
when�

E
�
U IIVi2

�
� E

�
U IDVC2

��
(n� 1) = RIDV2 �RIIV2 :

De�ne the function

r (x) �
p
x (n� 1)E

�p
V21V1�q(x(n�1))

�
+ x (n� 1)FV (q (x (n� 1))) ;

which corresponds to RIDV2 , and

w (x) =

�
1

n� 1

�
E
�
V21V1<q(x(n�1))

�
+ x (1� FV (q (x (n� 1)))) ;

which corresponds to E
�
U IDVC2

�
(n� 1). Note that

r0 (x) = (n� 1)FV (q (x (n� 1))) +
1

2

r
n� 1
x

E
�p
V21V1�q(x(n�1))

�
;

and that

w0 (x) = 1� FV (q (x (n� 1))) :

Now notice that r0 (x) > w0 (x) > 0. Since r (x) and w (x) are both strictly monoton-
ically increasing, and r0 (x) > w0 (x), the expressions E

�
U IIVi2

�
(n� 1) � w (x) and

r (x)�RIIV2 intersect only once. Let ex � �x : r (x)�RIIV2 = E
�
U IIVi2

�
(n� 1)� w (x)

	
,

which has a single element. Notice that if xIDVC2 = ex, then the IDV incum-
bent�s expected utility in the IDV case is the same as in the IIV case. It has
been proven that E

�
U IDVC2

�
< E

�
U IIVi2

�
, which implies that xIDVC2 < ex. Thus,

E
�
U IIVi2

�
(n� 1) � w

�
xIDVC2

�
> E

�
U IIVi2

�
(n� 1) � w (ex). Also, xIDVC2 < ex implies

that r
�
xIDVC2

�
�RIIV2 < r (ex)�RIIV2 . Since r0 (x) > w0 (x) > 0,

E
�
U IIVi2

�
(n� 1)� w

�
xIDVC2

�
� E

�
U IIVi2

�
(n� 1)� w (ex)

< r (ex)�RIIV2 �
�
r
�
xIDVC2

�
�RIIV2

�
:

This simpli�es to

r
�
xIDVC2

�
+ w

�
xIDVC2

�
< w (ex) + r (ex)
= E

�
U IIVi2

�
(n� 1) +RIIV2 .

That is,
�
E
�
U IIVi2

�
� E

�
U IDVC2

��
(n� 1) > RIDV2 �RIIV2 .
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Proposition 7 If (4) is satis�ed, ex ante expected e¤ort expenditures are strictly
lower in the IDV case than in the IIV case.

Proof. Suppose that RIDV2 > RIIV2 . Since E
�
U IDVI2

�
> E

�
U IIVi2

�
RIIV2 �RIDV2 >

�
E
�
U IDVC2

�
� E

�
U IIVi2

��
(n� 1) :

But this can be rewritten as�
E
�
U IIVi2

�
� E

�
U IDVC2

��
n (n� 1) + 2xIDVC2 FV

�
q
�
xIDVC2 (n� 1)

��
�2
�

1

n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
>

�
E
�
U IDVC2

�
� E

�
U IIVi2

��
(n� 1) :

Since, xIDVC2 FV
�
q
�
xIDVC2 (n� 1)

��
�
�

1
n�1
�
E
�
V21V1�q(xIDVC2 (n�1))

�
, and E

�
U IDVC2

�
<

E
�
U IIVi2

�
, the LHS of this inequality is positive. RIDV2 > RIIV2 implies that the LHS

is negative, a contradiction.

Proposition 8 When the equilibrium in t = 2 of the IDV case is not interior , total
e¤ort expenditures in the IPV case, RIDV , strictly exceed those of the IIV case. If
the equilibrium in t = 2 of the IDV case is interior then RIDV = RIIV :

Proof. In equilibrium, the di¤erence between the IDV incumbent�s ex ante expected
utility and that of the challenger is:

E
�
U IDVI2

�
� E

�
U IDVC2

�
= E (V ) +

�
n� 3
n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
� 1

(n� 1)2
E
�
V21V1�q(xIDVC2 (n�1))

�
�
xIDVC2

�
1� FV

�
q
�
xIDVC2 (n� 1)

���
(n� 1) :

Notice that total e¤ort expenditure in the IPV case will increase relative to the IIV
case if:

2E (V ) (n� 1)
n

�
�
E (V ) + E

�
U IDVI2

�
� E

�
U IDVC2

��
(n� 1)

n
+

nxIDVC2 + xIDVC2 FV
�
q
�
xIDVC2 (n� 1)

��
(n� 2)

�
�
n� 2
n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
:
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This condition simpli�es to:

E
�
V21V1�q(xIDVC2 (n�1))

�
� FV

�
q
�
xIDVC2 (n� 1)

��
xIDVC2 (n� 1) :

Since E (V2 j v1) is strictly increasing in v1 the inequality is strict if the equilibrium
in t = 2 is not interior. If the equilibrium is interior, then RIDV = RIIV .

Proposition 9 The equilibrium expenditure in the IDV case of a challenger and of
the incumbent is decreasing in n. The ex ante expected aggregate e¤ort expenditures
in t = 2 is increasing in n.

Proof. Recall that g(x) = 0 satis�es (3), which de�nes an equilibrium

g(x) =
(n� 2)
x (n� 1)

q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

+

r
(n� 1)
x

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

+FV (q (x (n� 1)))� n:

The partial derivative with respect to x is

@g

@x
= �

p
(n� 1)

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

2x
3
2

�

(n� 2)
q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

x2 (n� 1) < 0:
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The partial derivative with respect to n is

@g

@n
=

1

x (n� 12)

q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

+
1

2
p
x (n� 1)

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1 � 1:

(3) immediately demonstrates that this expression is negative. Since both of these
partial derivatives are negative,

dx

dn
= �

�
@g
@n

��
@g
@x

� < 0:
That is dxIDVC2

dn
< 0.

Next, note that

@E
�
xIDVI2 (V1)

�
@n

= xIDVC2 FV
�
q
�
xIDVC2 (n� 1)

��
� x

+
1

2

s
xIDVC2

n� 1

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1:

@E
�
xIDVI2 (V1)

�
@xIDVC2

= (n� 1)FV
�
q
�
xIDVC2 (n� 1)

��
� n

+
1

2

s
n� 1
xIDVC2

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1:

Utilizing (3), it is straightforward to show that both of these are positive. Plugging
these partial derivatives into

dE
�
xIDVI2

�
dn

=
@E
�
xIDVI2 (V1)

�
@n

+
@E
�
xIDVI2 (V1)

�
@xIDVC2

dxIDVC2

dn
;
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and simplifying demonstrates that
dE(xIDVI2 )

dn
< 0. Next, note that

@RIDV2

@n
= xIDVC2 FV

�
q
�
xIDVC2 (n� 1)

��
+
1

2

s
xIDVC2

n� 1

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1:

@RIDV2

@xIDVC2

= (n� 1)FV
�
q
�
xIDVC2 (n� 1)

��
+
1

2

s
n� 1
xIDVC2

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1:

These partial derivatives are positive. Plugging them into

dRIDV2

dn
=
@RIDV2

@n
+
@RIDV2

@xIDVC2

dxIDVC2

dn
;

and simplifying demonstrates that dR
IDV
2

dn
> 0.

Appendix B
This appendix contains two alternative ways of modeling an incumbency advan-

tage. Both of these maintain the information structure of the IIV case, such that
information complete in t = 1; 2.

Status Quo Bias (SQB)

One way in which an incumbent might have an advantage over a challenger is
through an increased probability of winning the subsequent contest for any vector
of e¤ort x2. That is, by virtue of holding the high ground, the incumbent has an
exogenously higher probability of winning than she would otherwise have. I call
such an incumbency advantage a status quo bias.

Consider the case in which v1 and v2 are independent draws from the distribution
FV (the information structure found in the IIV case). To model a status quo bias,
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the contest success function is modi�ed such that the probability that contestant i
obtains the prize in t = 2 is now given by

epi2 (xi2;x�i2) = xi2 + �1fi =Ig
xi2 + � +

P
j2N�i

xj2
;

where � > 0 is added to the aggregate e¤ort expenditures in t = 2, and the probability
�=
�
� +

P
i2N xi2

�
> 0 represents the status quo bias. This is similar to the incum-

bent having a negative �xed cost of e¤ort. However, it di¤ers in that the incumbent
is not awarded � if she were to expend zero e¤ort. Notice that �=

�
� +

P
i2N xi2

�
is

decreasing in
P

i2N xi2. This captures the idea that an incumbent has an increased
probability of obtaining the prize in t = 2, but that challengers are at less of a disad-
vantage as they increase their e¤ort. If

P
i2N xi2 = 0, then the incumbent wins with

certainty. As such there is no need to separately de�ne the border case in which no
contestant expends any e¤ort. In t = 1, the contest success function is unchanged
from that of the IIV and IDV cases.

I now turn attention to the incumbent�s problem in the t = 2. (as before, player
I is the incumbent). The incumbent�s expected utility is

USQBI2 �
1Z
v

epi2 (xI2;xC) v2dFV (v2)� xI2:
The partial derivative is given by

E (V )
P
j2C

xj2 
xI2 + � +

P
j2C

xj2

!2 � 1:

Similarly, the expected utility of contestant j 2 C is

USQBj2 �
1Z
v

epj2 (xj2;x�j2) v2dFV (v2)� xj2
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with partial derivative

E (V )

 P
k2C�j

xk2 + xI2 + �

!
 
xI2 + � +

P
j2C

xj2

!2 � 1:

Reasoning identical to that used in the IDV case demonstrates that the chal-
lengers will exert the same amount of e¤ort in equilibrium. In the SQB case, I
denote equilibrium e¤ort by the incumbent as xSQBI2 and equilibrium e¤ort of a chal-
lenger as xSQBC2 . The magnitude of � determines whether contestants will expend
positive e¤ort in equilibrium.

First, consider � � E (V ). Notice that when � � E (V ), a challenger�s will
optimally expend zero e¤ort. Also, when

P
j2C xj2 = 0, then the incumbent�s best

response is to expend zero e¤ort because she will obtain the prize with certainty
regardless of expenditure. Thus, when � > E (V ), xSQBI2 = xSQBC2 = 0. The intuition
of this scenario is clear: when the incumbent has an advantage so signi�cant that
xSQBC2 � E (V ) just to have an equal probability of winning the prize (even when the
incumbent doesn�t expend any e¤ort), the challengers will not expend any e¤ort. In
this case, the incumbent obtains the prize with certainty. Thus, if � � E (V ), the
ex ante value of obtaining the good in t = 1 is 2E (V ) :

Now consider � 2 [E (V ) (n� 1) =n2; E (V )). The status quo bias is signi�cant
enough that xSQBI2 = 0. The �rst order condition of a challenger holds, and

xSQBC2 =
(n� 2)E (V )� 2 (n� 1) � +

q
(n� 2)2E (V )2 + 4E (V ) (n� 1) �

2 (n� 1)2
:

In this case, the status quo bias is not so large that a challenger will not attempt
to obtain the prize, but it is large enough that that the incumbent does not expend
any e¤ort. Notice that this is the case if � � xIIVi2 .

Next, consider � 2 (0; E (V ) (n� 1) =n2). Here every contestant�s �rst order
condition holds. Solving the set of n simultaneous equations yields equilibrium
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e¤ort levels xSQBC2 = xIIVi2 , and xSQBI2 = xIIVi2 � �. Notice that xSQBI2 > 0 only when
� < E (V ) (n� 1) =n2.
So, to summarize, the equilibrium e¤ort levels of a challenger in t = 2 of the SQB

case are given by

xSQBC2 =

8>><>>:
E(V2)(n�1)

n2
if � 2

�
0; E(V )(n�1)

n2

�
(n�2)E(V )�2(n�1)�+

p
(n�2)2E(V )2+4E(V )(n�1)�

2(n�1)2 if � 2
h
E(V )(n�1)

n2
; E (V )

�
0 if � 2 [E (V ) ;1) :

Notice that xSQBC2 is decreasing in n when � < E (V ), and that limn!1 x
SQB
C2 = 0 as

in the IIV case. The equilibrium e¤ort expenditure of the incumbent is

xSQBI2 =

8>><>>:
E(V )(n�1)

n2
� � if � 2

�
0; E(V )(n�1)

n2

�
0 if � 2

h
E(V )(n�1)

n2
; E (V )

�
0 if � 2 [E (V ) ;1) :

Which is decreasing in � and n when � < E (V ) (n� 1) =n2. Since

lim
n!1

E (V ) (n� 1) =n2 = 0

for any � > 0 there exists some n large enough that � > E (V ) (n� 1) =n2 and
xSQBI2 = 0 above this n. Therefore limn!1 x

SQB
I2 = 0.

The equilibrium aggregate e¤ort expenditures in t = 2 of the SQB case, RSQB2 , is
given by

RSQB2 =

8>><>>:
E(V )(n�1)

n
� � if � 2

�
0; E(V )(n�1)

n2

�
(n�2)E(V )�2(n�1)�+

p
(n�2)2E(V )2+4E(V )(n�1)�

2(n�1) if � 2
h
E(V )(n�1)

n2
; E (V )

�
0 if � 2 [E (V ) ;1) :

Notice that RSQB2 is decreasing in � and n when � < E (V ). As such

lim
n!1

RSQB2 = lim
n!1

(n� 2)E (V )� 2 (n� 1) � +
q
(n� 2)2E (V )2 + 4E (V ) (n� 1) �

2 (n� 1)
= E (V )� �:
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The equilibrium expected utility of the incumbent in the SQB case is given by

USQBI2 =

8>><>>:
E(V )
n2

+ � if � 2
�
0; E(V )(n�1)

n2

�
p
(n�2)2E(V )2+4E(V )(n�1)��(n�2)E(V )

2
if � 2

h
E(V )(n�1)

n2
; E (V )

�
E (V ) if � 2 [E (V ) ;1) :

When � 2 (0; E (V ) (n� 1) =n2), the incumbent�s expected utility has increased by
exactly � relative to the IIV case. For � 2 [E (V ) (n� 1) =n2; E (V )), the incum-
bent�s expected utility is increasing at a decreasing rate in �. Once � � E (V ), the
status quo bias is so large that the incumbent wins the prize with certainty with-
out expending any e¤ort. As such increasing the magnitude of � does not increase
her expected utility. Likewise increasing n does not a¤ect USQBI2 when � � E (V ).
When � < E (V ), USQBI2 is decreasing in n. Because limn!1E (V ) (n� 1) =n2 = 0,
limn!1 U

SQB
I2 = 0.

The equilibrium expected utility of a challenger in the SQB case is given by

USQBC2 =

8>><>>:
E(V )
n2

if � 2
�
0; E(V )(n�1)

n2

�
E(V )(n(n�2)+2)+2�(n�1)�n

p
(n�2)2E(V )2+4E(V )(n�1)�

2(n�1)2 if � 2
h
E(V )(n�1)

n2
; E (V )

�
0 if � 2 [E (V ) ;1) :

Notice that when � 2 (0; E (V ) (n� 1) =n2), USQBC2 = U IIVi2 . For

� 2
�
E (V ) (n� 1) =n2; E (V )

�
the expected utility of a challenger is decreasing in �. Once � � E (V ), a challenger
does not obtain the prize with certainty, and has an expected utility of zero as a result.
Notice that when � < E (V ), USQBC2 is decreasing in n and that limn!1 U

SQB
C2 = 0

An interesting result arises when � 2 (0; E (V ) (n� 1) =n2]. The expected utility
of the incumbent has increased by � relative to the IIV case, and the expected utility
of a challenger remains unchanged relative to the benchmark case. Further, RIIV2 �
RSQB2 = �. If a contest designer were concerned with the welfare of the contestants,
and would also like to decrease total e¤ort in t = 2, choosing � = E (V ) (n� 1) =n2
reduces equilibrium e¤ort expenditures, and strictly increases the expected utility of
the incumbent without reducing the expected utility of the challengers. Put another
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way, in a one-shot game, where e¤ort is a social bad, choosing � = E (V ) (n� 1) =n2
Pareto dominates � < E (V ) (n� 1) =n2.

Turning attention to t = 1, note that the incentives the contestants face in t = 1
will be di¤erent, depending on the magnitude of �. Thus, each of the three cases
outlined above must be considered individually. The expected utility of contestant
i is

USQBi1 �
1Z
v

p (xi1;x�i1) v1dFV (v1)

�xi1 +
�
p (xi1;x�i1)

�
USQBI2

��
+(1� p (xi1;x�i1))

�
USQBC2

�
:

The �rst period is, in essence, a contest in which the prize over which the contestants
compete is E (V ) +

�
USQBI2 � USQBC2

�
. The unique and symmetric equilibrium in-

volves every contestant i 2 N expending

xSQBi1 �

�
E (V ) +

�
USQBI2 � USQBC2

��
(n� 1)

n2

in t = 1. The equilibrium aggregate e¤ort expenditures in t = 1 is then

RSQB1 � nxSQBi1 =

�
E (V ) +

�
USQBI2 � USQBC2

��
(n� 1)

n

and the equilibrium expected utility of contestant i in t = 1 is

USQBi1 =

�
E (V ) +

�
USQBI2 � USQBC2

��
n2

:

Total equilibrium e¤ort expenditures across both periods is given by

RSQB �

8>><>>:
2E(V )(n�1)

n
� �

n
if � 2

�
0; E(V )(n�1)

n2

�
(E(V )+(USQBI2 �USQBC2 ))(n�1)

n
+ (n� 1)xSQBC2 + xSQBI2 if � 2

h
E(V )(n�1)

n2
; E (V )

�
E(V )(n�1)

n
if � 2 [E (V ) ;1) :
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When � 2 [E (V ) (n� 1) =n2; E (V )), I have not simpli�ed RSQB due to space con-
straints. RSQB > RIIV if�

E (V ) +
�
USQBI2 � USQBC2

��
(n� 1)

n
+ (n� 1)xSQBC2 + xSQBI2 >

2E (V ) (n� 1)
n

:

When

� 2
�
0; E (V ) (n� 1) =n2

�
RSQB � RIIV = ��=n. When � 2 [E (V ) (n� 1) =n2; E (V )), RSQB is concave, and
has a maximum value such that RSQB > RIIV . Once � 2 [E (V ) ;1), RSQB = RIIV .
Indeed, RSQB = RSQB1 .

A contest designer who seeks to maximize RSQB, would would choose

� 2
�
E (V ) (n� 1) =n2; E (V )

�
:

Doing so ensures the the incumbent will not expend any e¤ort. E¤ort expenditures
in t = 1 more than make up for the decrease expenditures in t = 2. Further, if a
contest designer sought to minimize e¤ort expenditures (that is, maximize the sum
of the contestants expected utility) she would choose � = E (V ) (n� 1) =n2. Notice
that this is the largest � which does not reduce the expected utility of the challengers
relative to the IIV case. Of interest is the fact that the optimal level of � is positive,
regardless of whether or not e¤ort expenditures are a social bad.

Cost Advantage (CST)

Another way to approach the concept of incumbency advantage is to allow the
incumbent to have a cost advantage over the challenger. That is, allow the incumbent
to have a lower marginal cost than the challenger. A model using this approach was
introduced in Mehlum and Moene (2006). They model an in�nitely repeated contest
between two contestants in which a cost advantage is held by the contestant who
obtained the prize in the previous period.

Below is a modi�ed version of their model in which contestants compete in t = 1
with symmetric costs, and in t = 2, the incumbent has a lower marginal cost of
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e¤ort than the challengers. Modeling it in this fashion allows me to examine the
incentive to acquire this cost advantage when contestants are symmetric; and change
in behavior in t = 1 relative to the IIV case is then attributable to the incumbents
cost advantage. As such, the only di¤erence between this model and the IIV case is
that the incumbent has a cost of e¤ort of CI (xI2) = cxI2, where c 2 (0; 1).

In t = 2 the expected utility of the incumbent is

UCSTI2 �
1Z
v

pI2 (xI2;xC) v2dFV (v2)� cxI2:

Similarly, the expected utility of contestant j 2 C is

UCSTj2 �
1Z
v

pj2 (xj2;x�i2) v2dFV (v2)� xj2:

This subgame has a unique subgame. I denote the equilibrium e¤ort expenditure
of the incumbent as xCSI2 and that of a challenger as xCSTC2 . The equilibrium e¤ort
levels are given by

xCSI2 =
E (V ) (n� 1) (n (1� c) + 2c� 1)

(n� 1 + c)2

xCSTC2 =
c (n� 1)E (V )
(n� 1 + c)2

:

The equilibrium aggregate e¤ort expenditures in t = 2 is

RCST2 � E (V ) (n� 1)
(n� 1 + c) :

Further, the equilibrium expected utility of the incumbent is

UCSTI2 =
cE (V )

(n+ c� 1)2

and the equilibrium expected utility of a challenger is

UCSTC2 =
c2E (V )

(n+ c� 1)2
:
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Next, consider contestant i�s expected utility in t = 1.

UCSTi1 �
1Z
v

pi1 (xi1;x�i1) v1dFV (v1)� xi1

+pi1 (xi1;x�i1)

�
cIE (V1)

(n+ cI � 1)2
�

+(1� pi1 (xi1;x�i1))
c2IE (V1)

(n+ cI � 1)2
:

Equilibrium e¤ort expenditure in t = 1 is

xCSTi1 � 2 (n� 1)E (V )
n2 (c+ 1)

:

Total equilibrium e¤ort expenditures across t = 1; 2 is

RCST � 2 (n� 1)E (V )
n2 (c+ 1)

+
E (V ) (n� 1)
(n� 1 + c) :

Notice that RCST > RIIV . This is because the reduced marginal cost causes the
incumbent to increase her e¤ort expenditures in t = 2 relative to the IIV case. In
response, the challengers also increases their expenditures. Further, contestants in
t = 1 increase their e¤ort expenditures relative to the IIV case an attempt to obtain
the incumbent cost advantage. Also, notice that RCST is monotonically decreasing
in c; as the incumbents cost advantage increases, so does RCST . This is in contrast to
the status quo bias model discussed above. In that model, there were two competing
e¤ects, one of which increased e¤ort, while the other decreased e¤ort. As such, the
e¤ect of an incumbency advantage is sensitive to how it is modeled.
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