




1 Introduction

In a contest a set of economic agents expend unrecoverable e¤ort to increase

the probability of obtaining a good. One of the contestants wins the contest

and gets the good. In a perfectly discriminating contest, also known as an

all-pay auction, the contestant who expends the most e¤ort wins the contest

with certainty. In an imperfectly discriminating contest, an increase in

e¤ort relative to the other contestants increases the probability of winning,

but no contestant wins the contest with certainty. The applications of such

games are abundant and diverse. Contests are used to model research and

development, elections, sports, labor markets and many more.

The theoretical analysis of contests is a vast and burgeoning literature

which traces its roots to Tullock (1967). A survey of this literature can be

found in Konrad (2009). An important topic in this literature is the role

of asymmetric information. However, the literature concerning asymmetric

information in contests is quite small. Wärneryd (2003) analyses a two player

imperfectly discriminating contest in which one contestant is informed of the

common but uncertain value of the good prior to bidding, while the other

contestant knows only the distribution from which this value was drawn.

In this framework, revenue decreases relative to the cases in which neither,

or both, contestants are informed regarding the realized value of the good..

The informed contestant is better o¤ in expectation than in either of these

symmetric information cases, and the uninformed contestant is worse o¤ in
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expectation. Rentschler (2010) extends these results in a two period model

with more than two contestants. In the �rst round information is symmetric;

no contestant holds information regarding the common and uncertain value of

the good, beyond the distribution from which it is drawn. The winner of the

�rst contest privately observes the value of the good in the �rst contest, and

this value serves as a noisy signal regarding the value of the good in the second

contest. The results in Wärneryd (2003) extent to this generalized case.

Further, the increased incentive to win the �rst contest is su¢ cient to increase

aggregate e¤ort relative to the case in which information is symmetric in both

contests.

In a related paper, Hurley and Shogren (1998) analyze a two player con-

test in which one contestant knows the other�s valuation of the good, while the

informed contestant�s valuation is private information. They �nd that such

an information asymmetry reduces the uninformed contestant�s probability

of winning. Fu (2006) considers a model in which contestants are asymmetri-

cally informed and endogenously choose the order in which they choose their

respective bids. In this model the uninformed contestant chooses to move

�rst, and e¤ort expenditures are reduced relative to a simultaneous move

game. Prior to this paper, the role of asymmetric information in perfectly

discriminating contests has not been analyzed theoretically.

This paper experimentally examines the role of asymmetric information

in incomplete information contests, both perfectly and imperfectly discrimi-
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nating. In our experimental design two contestants, or bidders, simultane-

ously submit bids, in an e¤ort to obtain a good.1 This good has a common

but uncertain value. We vary the contest success function between perfectly

discriminating (all-pay auction), and imperfectly discriminating (lottery con-

test). We also vary the information structure of the game. In the symmetric

information structure, neither bidder holds any private information regarding

the value of the good. In the asymmetric information structure one bidder

observes a noisy signal regarding the value of this good, while the other does

not. We also examine an all-pay auction in which each bidder observes a

private signal, which allows us to compare our results to those of Grosskopf

(2010), which experimentally analyses �rst-price auctions under these three

information structures.

We also characterize the Nash equilibrium in an asymmetric informa-

tion all-pay auction; one contestant receives a noisy estimate regarding the

common and uncertain value of the good, while the other contestant does

not. We �nd that aggregate e¤ort falls in expectation relative to the case in

which neither bidder observes a signal. Further, the informed contestant is

better o¤ relative to this symmetric information case, while the uninformed

contestant has an expected payo¤ of zero.

1In the contest literature players are typically called contestants. In the all-pay auction
literature, players are typically called bidders, and their e¤ort expenditures are refered to
as bids. Throughout the body of the paper we refer to players as bidders, and e¤ort
expenditures as bids. Our experimental instructions also used this terminology to frame
the game.
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Our experimental analysis yields several interesting results. First, in-

formation asymmetry reduces revenue in all-pay auctions. However, this in

not the case in lottery contests; we are unable to reject revenue equivalence.

We also �nd that the symmetric information all-pay auctions yields higher

revenue that the symmetric information lottery contest. Interestingly, when

there is asymmetric information, this does not hold. That is, we are unable

to reject revenue equivalence between all-pay auctions and lottery contests

when there is asymmetric information.

We also �nd, in both all-pay auctions and lottery contests, that the in-

formed bidder is better o¤ than the uninformed bidder. Additionally in both

all-pay auctions and lottery contests, the informed bidder in the asymmetric

information environment is better o¤ than bidders in the symmetric informa-

tion environment; the informed bidder earns a positive information rent. In

accordance with theory, the uninformed bidder in the asymmetric informa-

tion lottery contest is worse o¤ than bidders in the symmetric information

lottery contest. Also in accordance with theory, the uninformed bidder in

the asymmetric information all-pay auction is not worse o¤ than bidders in

the symmetric information all-pay auction; we are unable to reject payo¤

equivalence between these two types of bidders. We also �nd that bidders

in the symmetric information lottery contest are better o¤ than bidders in

the symmetric information all-pay auction. Additionally, we are unable to

reject payo¤ equivalence between uninformed bidders in all-pay auctions and

lottery contests, as well as payo¤ equivalence between informed bidders in
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all-pay auctions and lottery contests. This observation provides additional

insight into the revenue equivalence between the two asymmetric information

environments

We also compare bidding behavior to a strategy above which a bidder

is guaranteed to earn negative payo¤s, provided the other bidder is bidding

according to the Nash equilibrium. We call such a bidding strategy a break-

even bidding strategy. Such a threshold is of interest, since experimentalists

have observed that bidders in contests often overbid relative to Nash pre-

dictions and go bankrupt as a result. Bidding above a break-even bidding

strategy is analogous to falling victim to the winner�s curse, which has been

widely observed in the experimental auction literature.2 We observe that in-

formed bidders in the asymmetric information environments are much more

prone to bid above this break-even bidding strategy than are uninformed

bidders in the asymmetric or symmetric information environments. This

is consistent with the �ndings of Grosskopf et al. (2010), which experimen-

tally analyses the e¤ect of asymmetric information in �rst-price, sealed-bid,

common-value auctions. As mentioned above, to further aid comparison of

our data to that of Grosskopf et al. (2010) we ran sessions in which bidders

participate in a series of all-pay auctions and both bidders privately observe

a signal (the signals are independent, conditional on the realized value of

the good). While we do not have theoretical predictions for this game, bid-

ding above a break-even bidding strategy is much more prevalent than in

2For an overview of this literature see Kagel and Levin (2002).
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the symmetric information all-pay auctions in which neither bidder observed

a signal.3 As such, we can con�dently say that asymmetric information is

not the determining factor in informed bidders bidding above the break-even

bidding strategy.

We also �nd evidence that men bid less than women regardless of the

contest success function or the information structure of the game. In asym-

metric information lottery contests, women learned to decrease their bids

faster than men, such that by the �nal periods behavior had converged. This

accelerated learning of women was not signi�cant for bidders with symmet-

ric information, or bidders in all-pay auctions with symmetric or asymmetric

information.

Most of the existing experimental literature regarding contests and all-pay

auctions study complete information environments. That is, each bidder�s

valuation of the good is common knowledge. Miller and Pratt (1989), exam-

ines lottery contests with complete information and �nd signi�cant overbid-

ding. Miller and Pratt (1991) �nds that bidding is decreasing in risk aversion

in complete information, common-value lottery contests. Davis and Reilly

(1998) and Potters et al. (1998) both examine lottery contests and all-pay

auctions in a complete information and common value context, and �nd that

the all-pay auction generates more revenue than lottery contests. Rapoport

3The break even bidding-strategy in the all-pay auction in which each bidder observes
a private signal is de�ned under the assumption that bidders employ a monotonically
increasing bid function.
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and Amaldoss (2004) experimentally examine all-pay auctions with complete

information, a common-value good, and binding budget constraints. They

�nd that behavior is consistent with equilibrium predictions at the aggre-

gate, but not individual, level. Gneezy and Smorodininsky (2006) study

common-value all-pay auctions with complete information and �nd dramatic

overbidding relative to Nash predictions.

The experimental literature regarding contests with incomplete informa-

tion is surprisingly small. Noussair and Silver (2006) study all-pay auctions

in an independent private value environment. They �nd that this all-pay

auction yields more revenue than predicted by theory, as well as yielding

more revenue than the analogous �rst-price, sealed-bid auction. Barut et

al. (2002) examines an independent private value all-pay auction with mul-

tiple units of the good, and �nd that bidder�s overbid relative to the Baysian

equilibrium. To the best of our knowledge, this is the �rst experimental

analysis of perfectly or imperfectly discriminating contests with asymmetric

information.

The remainder of the paper is organized as follows. Section 2 describes

our experimental design. Section 3 contains the theoretical predictions. Sec-

tion 4 provides our experimental results. Section 5 contains the conclusion.

Appendix A contains the theoretical derivations of the Nash equilibrium of

all-pay auctions with asymmetric information in a general environment. Ap-

pendix B contains the derivations of theoretical predictions using the distrib-
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utions and parameters used in our design, Appendix C contains experimental

results regarding all-pay auctions in which each bidder holds private infor-

mation, and Appendix D provides a sample set of instructions.

2 Experimental Design

We employ a between-subject design which varies the game between an all-

pay auction (perfectly discriminating contest) and a lottery contest (imper-

fectly discriminating contest) and varies the information observed by bidders

prior to placing their bids. This design is summarized in Table 1. Partici-

pants engage in either a series of common-value, two-player all-pay auctions

or lottery contests. Within a group of ten, participants are randomly and

anonymously matched into pairs at the beginning of each session. Each

bidder submits a bid, which must be paid. In all-pay auction sessions the

bidder who submits the highest bid wins the all-pay auction and receives the

good (in the event of equal bids, both bidders have a 50% chance of obtaining

the good). In lottery contest sessions the probability that a bidder obtains

the good is her proportion of the sum of bids. Participants are randomly

and anonymously rematched after each round. This process is repeated for

9



thirty rounds.45

In each all-pay auction or lottery contest a good with a common but

uncertain value is available. The common value, x, is a realization of the

random variable X, which is uniformly distributed with support [25; 225].

The realized value of the good is not observed by bidders before placing their

bids. The distribution of X is common knowledge. Prior to placing their

bid, bidders may privately observe a signal, which is drawn from a uniform

distribution with support [x� 8; x+ 8]. The treatments of our experimental

design are as follows.

1. Symmetric information all-pay auction (SAP).� Participants engage in

30 all-pay auctions. In each of these all-pay auctions neither bidder

observes any information regarding x beyond the distribution of X.

As such, no bidder holds any private information, and information is

symmetric.

2. Asymmetric information all-pay auction (AAP).� Participants engage

in 30 all-pay auctions. In each of these all-pay auctions one of the

bidders is randomly chosen to be the informed bidder, who privately

observes a signal. This signal, zI , is drawn from a uniform distribution

4Since matching of participants occured within groups of ten, and thirty rounds were
conducted, participants were inevitably matched together more than once. However, par-
ticipants were anonymously matched such that they were unable to build a reputation.
Further, each session was ususally run with twenty or thirty participants, and participants
were not informed that they would only interact within a group of ten.

5In one of the contest sessions, there are only 29 rounds.
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with support [x� 8; x+ 8]. The other bidder does not observe a signal;

all the information available to them was common knowledge. Since

the informed bidder is randomly determined in each auction, bidders

change roles throughout each session.

3. Symmetric information lottery contest (SLC).� Participants engage in

30 lottery contests auctions. Neither bidder observes any information

regarding x beyond the distribution of X. As such, no bidder holds

any private information, and information is symmetric.

4. Asymmetric information lottery contest (ALC).� Participants engage

in 30 lottery contests auctions. One of the bidders is randomly chosen

to be the informed bidder, who privately observes a signal. This sig-

nal, zI , is drawn from a uniform distribution with support [x� 8; x+ 8].

The other bidder does not observe a signal; all the information avail-

able to them was common knowledge. Since the informed bidder is

randomly determined in each auction, bidders change roles throughout

each session.

In each of these treatments, the information structure is common knowl-

edge. That is, if a bidder observes a signal, this fact, as well as the dis-

tribution from which the signal is drawn, is common knowledge. At the

conclusion of each auction each bidder observes both bids, the earnings of

both bidders, their own balance and, if applicable, the private signal(s) (par-
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Table 1: Experimental design
Between-subject design

All-pay auctions. Lottery contests
Symmetric information 5 groups of 10 5 groups of 10
Asymmetric information 5 groups of 10 5 groups of 10

ticipant numbers are suppressed).6

Examining two-bidder games makes sense because in all-pay auctions with

asymmetric information the equilibrium bid function of the informed bidder

does not depend on the number of bidders. The expected payo¤s of these

bidders (and hence, expected revenue) also do not depend on the number of

bidders. Since we are interested in the role of information, we leave the test of

these comparative statics to future research. Second, existing experimental

analysis on all-pay auctions with symmetric information examines games

with more than two bidders. Thus, our SAP treatment provides insight not

already found in the literature.

All sessions were run at the Economic Research Laboratory (ERL) at

Texas A&M University, and our participants were matriculated undergrad-

uates of the institution. The sessions were computerized using z-Tree (Fis-

chbacher 2007). Participants were separated by dividers such that they can

not interact outside of the computerized interface. They were provided with

6Armantier (2004) �nds that the ex post observation of bids, earnings and signals
�homogenizes behavior, and accelerates learning toward the Nash equilibrium�in common-
value �rst-price auctions when all bidders observe a signal.
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instructions, which were read aloud by an experimenter.7 After they in-

structions were read, questions were answered privately. Each participant

then individually answered a set of questions to ensure understanding of the

experimental procedure; their answers were checked by an experimenter who

also answered any remaining questions. Participants were provided with

a history sheet which allowed them to keep track of bids, earnings and. if

applicable, signal(s) in each round. Each session lasted approximately two

hours. Each participant began with a starting balance of $20 to cover any

losses; no participant went bankrupt. At the end of all rounds, each partici-

pant was paid their balance, as well as a show-up fee of $5. The bids, signals

and values were all denominated in Experimental Dollars (ED), which were

exchanged for cash at a rate of 160ED=$1. The average payo¤ was $25:57,

with a range of $9:44 to $33:62.

3 Theoretical Predictions

A set of risk neutral players N �f1; 2g compete for a good with a common

but uncertain value. The value of the good is a realization of the random

variable X, which is uniformly distributed on [25; 225]. This distribution

function is commonly known. The expected value of X = E (X) = 125.

Player i 2 N chooses an unrecoverable bid, bi 2 R+ at a cost of Ci (bi) = bi
7The instructions for the ALC treatment are found in Appendix C. Instructions for

the remaining treatments are available upon request.

13



in an e¤ort to obtain the good. These bids are chosen simultaneously, and

players do not observe the value of x before choosing bi. Players are not

budget constrained; the strategy space of each player is R+. The vector of

bids is b �fb1; b2g. Further, b�i � bnbi and N�i � Nni.

The function pi : R+ ! [0; 1] maps b into the probability that contestant

i will receive the good. This function is typically called the contest success

function in the contest literature. Di¤erent functional forms of pi have

been studied in the literature. Depending on the functional form of pi a

contest may be characterized as either a perfectly discriminating contest or

an imperfectly discriminating contest. In a perfectly discriminating contest,

pi as is given by

pi =

8>>>>>>>>>><>>>>>>>>>>:

1 if bi = max fb1; b2g

0 if bi = max fb1; b2g

1
2
if b1 = b2:

Note that in such a perfectly discriminating contest the bidder with the

highest bid obtains the good with certainty. Since bids are unrecoverable,

this perfectly discriminating contest is equivalent to a �rst-price, sealed-bid,

all-pay auction. Indeed, this game is typically referred to as an all-pay

auction. As this terminology is prevalent throughout the literature, we

adopt it.
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In an imperfectly discriminating contest the bidder with the highest bid

does not obtain the good with certainty. Skaperdas (1996) axiomises a class

of imperfectly discriminating contest success functions. A special case of

this class is

pi =

8>>>><>>>>:
bi

b1+b2
if max fb1; b2g > 0

1
2

if max fb1; b2g = 0;

which characterizes a lottery contest. Notice that each bidder�s probability

of obtaining the good is proportional to the revenue generated by the contest.

Also, when bi = bj = 0 then each bidder has an equal probability of obtaining

the good. However if both bidders were to bid nothing, there is an incentive

to bid an arbitrarily small amount and win the good with certainty. Thus

this boundary case does not arise in equilibrium. As such, any assumption

regarding this case would serve equally well. This particular contest success

function is widely utilized throughout the experimental literature regarding

contests. To aid in the comparability of our result with this literature we

utilize it as well.
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3.1 All-Pay Auctions

3.1.1 Symmetric Information All-Pay Auctions (SAP)

In a SAP auction, neither bidder holds private information. The distribution

from which the value of the good is drawn is common knowledge. Assuming

risk neutral bidders, this is strategically equivalent to an all-pay auction

with complete information in which E (X) is the common value of the good.

The equilibria of all-pay auctions with complete information are completely

characterized in Baye et al. (1996). In a two-bidder all-pay common-value

auction with complete information, there is a unique, symmetric, risk neutral

Nash equilibrium. In this equilibrium, both bidders employ a mixed strategy

with support on [0; 125]. The distribution function of this equilibrium mixed

strategy is given by

K (bi) =
bi
125

.

where bi is the bid of bidder i.

Notice that zero is an element of the support of this mixed strategy, which

implies that the bidders have an expected payo¤ of zero for every bid in that

support. That is E
�
�SAP

�
= 0. The expected revenue generated by this

equilibrium is E
�
RSAP

�
= E (X) = 125.

Break-even Bidding Strategy in SAP Suppose that bidder j were to

employ the equilibrium mixed strategy described above. Bidder i then has
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an expected payo¤ of zero for any bi 2 [0; 125]. For any bi > 125, bidder

i has a negative expected payo¤ in expectation. As such, �SAP = 125 is a

break-even bidding strategy; any bid above 125 guarantees a negative payo¤

in expectation.

3.1.2 Asymmetric Information All-Pay Auctions (AAP)

One of the bidders observes a signal, zI , prior to bidding; we refer to this

bidder as the informed bidder. This signal is a realization of the random

variable ZI which is uniformly distributed on [x� 8; x+ 8]. The distribution

function of ZI is denoted as FZI . The other bidder, who we refer to as

the uninformed bidder, does not observe a signal. She only knows the

distribution of X, ZI and the fact that the informed bidder will observe a

realization of ZI .

This model is similar to the one in Engelbrecht-Wiggans et al. (1983),

which studies this information structure in the context of a �rst-price, sealed-

bid auction. The primary di¤erence is that the low bidder must also pay her

bid. The model found in Engelbrecht-Wiggans et al. (1983) is experimen-

tally tested in Grosskopf et al. (2010).

The equilibrium for this model is derived for general joint distribution of

X and ZI in Appendix A. For the distributions and parameters employed

in our experimental design the risk neutral Nash equilibrium bid function for
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the informed bidder is given by

� (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(zI+58)(zI�17)2
19200

if zI 2 [17; 33)

zI + g (zI) if zI 2 [33; 217)

151683zI�z3I+24z2I�21595738
19200

if zI 2 [217; 233] ;

where g (zI) =
3z2I�1200zI�1811

1200
is the nonlinear portion of the informed AAP

bidder�s equilibrium bid function when zI 2 [33; 217).8

The uninformed bidder mixes on the interval [0; 125], where the proba-

bility that she bids b is

J (b) = Prob [� (ZI) � b]

= FZI
�
��1 (b)

�
.

The derivation of J (b) can be found in Appendix B. Note that the unin-

formed bidder will not bid more than 125 in equilibrium, because this would

ensure negative expected pro�ts upon winning the auction. Further, note

that J (b) indicates that the distribution of bids of the uninformed bidder

is identical to that of the informed bidder. As such, the ex ante probabil-

ity that the uninformed bidder will obtain the good is equal to the ex ante

8This de�nition of g (zI) is for notational convenience; we utilize this notation when
estimating bid functions.
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probability that the informed bidder will obtain the good.

Since, in equilibrium, the uninformed bidder employs a mixed strategy,

it must be the case that the expected payo¤ of any bid in the support of this

strategy yields the same expected payo¤. As above, the fact that zero is in

the support of the uninformed bidder�s equilibrium bidding strategy implies

that the ex ante expected payo¤of the uninformed bidder, E
�
�AAPU

�
, is zero.

Let q (zI) � E (X j zI). Since q (zI) is monotonically increasing in zI , the

distribution function of this random variable is FZI (q
�1 (�)), where q�1 (�) is

the inverse of q (�). The expected payo¤ of the informed bidder, when zI is

observed, is �AAPI (z1) =
R q(zI)
25

FZI (q
�1 (s)) ds. This yields

�AAPI (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(zI�17)3
38400

if zI 2 [17; 33)

1811+3zI(zI�50)
1200

if zI 2 [33; 217)

12015737�143667zI+699z2I�z3I
38400

if zI 2 [217; 233] .

Integrating over �AAPI (zI) with respect to FZI yields the ex ante expected

pro�t of the informed bidder, E
�
�AAPI

�
= 33:23. We refer to this as the in-

formed bidder�s information rent in an AAP auction. This large information

rent is largely due to the fact that the upper bound of the support of the un-

informed bidder�s equilibrium mixed strategy is 125. The ex ante expected

revenue of an AAP auction, E
�
RAAP

�
, is equal to E (X) � E

�
�AAPI

�
�
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E
�
�AAPU

�
= 91:77.

Interestingly, the expected payo¤s of both bidders in this AAP auction

are exactly the same as in the analogous �rst-price sealed-bid auction. These

results extend to a more general model, the proof of which is found in Ap-

pendix A.

Break-even Bidding Strategy in AAP For the informed bidder the

break-even bidding strategy is the bid which satis�es

FZI
�
��1 (b)

�
E (X j zI)� b = 0.

Since the uninformed bidder will never bid above E (X) = 125 in equilibrium,

when zI � 125, b = E (X j zI) is the break-even bid. For brevities sake,

we do not include the derivations of the break-even bidding strategy when

zI < 125. These derivations can be found in Appendix B.

For the uninformed bidder, the break-even bidding strategy is �AAPU =

125. The reasoning behind this is similar to that of SAP bidders. Namely,

for any bid less or equal to 125, the expected payo¤ is zero. To obtain a

negative expected payo¤, the uninformed bidder must bid more than 125:
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3.2 Lottery Contests

3.2.1 Symmetric Information Lottery Contests (SLC)

If both bidders hold only public information, the distribution of X is the

only information regarding x available to bidders before placing their bids.

Assuming risk neutral bidders, the well known unique equilibrium of this

game is for each bidder to bid E(X)
4

= 31:25.9. The revenue generated by

this equilibrium, E
�
RSLC

�
, is simply the sum of the bids, which is 62:5. The

expected payo¤ of each bidder is E
�
�SLC

�
= 31:25, which is equal to the

equilibrium bid.

Notice that bidders earn a positive payo¤ in equilibrium, despite holding

no private information. Further the E
�
RSLC

�
is half of E (X). Contrasting

this with the revenue prediction of the analogous all-pay auction, E
�
RSAP

�
=

125, we see that a SLC generates half the revenue of a SAP, in equilibrium.

Break-even Bidding Strategy in SLC The break-even bidding strategy

of bidder i in a SLC bidder is the bi which satis�es

bi
bi + 31:25

E (X)� bi = 0.

That is, the break-even bidding strategy of a SLC bidder is �SLC = 93:75.

This break-even bidding strategy is de�ned assuming the other bidder is

9This well known result can be found in Cornes and Hartly (2005). The derivations of
this equilibrium is found in Appendix B.
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bidding according to the Nash equilibrium. Notice that if the other bidder

were to bid more than the Nash equilibrium bid, as is often observed, the bid

which ensures an expected payo¤ of zero is lower than 93:75. As such, this

measure of overbidding is conservative, given the behavior typically observed

in lottery contest experiments.

3.2.2 Asymmetric Information Lottery Contests (ATC)

One bidder observes a private signal before placing her bid. We refer to this

bidder as the informed bidder. The signal is a realization of ZI which is

uniformly distributed on [x� 8; x+ 8] The distribution of ZI is FZI . The

other bidder holds no private information, and we refer to this bidder as the

uninformed bidder. Rentschler (2009) provides the unique, risk neutral Nash

of this game.10 The equilibrium bid function of the informed bidder is:

�ALC (zI) =

8>>>>>>><>>>>>>>:

0 if zI 2 [17; 25:74)p
14:68 (zI + 33)� 29:37 if zI 2 [25:74; 33)
p
29:37zI � 29:37m (zI) if zI 2 [33; 217)p
14:68 (zI + 217)� 29:37 if zI 2 [217; 233] ,

10The derivations of this Nash equilibrium bidding strategy, as well as the equilibrium
payo¤ and expected revenue predictions for the distributions used in our experimental
design are found in Appendix B.
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where m (zI) =
p
29:37zI � 29:37 is the nonlinear portion of �ALC (zI) when

zI 2 [33; 217).11

The equilibrium bid of the uninformed bidder, rounded to the nearest

cent, is bU = 29:37. Integrating �
ALC (zI) over ZI yields the ex ante expected

bid of the informed bidder, E
�
�ALC (zI)

�
= 29:37.

Notice that, in expectation, the informed bidder and the uniformed bidder

bid the same amount. Also, notice that if the informed bidder observes

a value of zI such that E (X p zI) < 29:37, the informed bidder will bid

zero. When E (X p zI) < 29:37, the informed bidder has no incentive to bid;

submitting a positive bid in such a circumstance yields negative expected

pro�ts. An interesting consequence of this observation is that, ex ante, the

uniformed bidder is expected to obtain the good with a higher probability

than the informed bidder.

The expected payo¤ of the informed bidder, when he observes zI , is given

by

�ALCI (zI) =

8>>>>>>><>>>>>>>:

0 if zI 2 [17; 25:74)
zI+91:74

2
� 2
p
14:685 (zI + 33) if zI 2 [25:74; 33)

zI + 29:3663� 2
p
29:37zI if zI 2 [33; 217)

zI+275:74
2

� 2
p
14:685 (zI + 217) if zI 2 [217; 233] .

11This de�nition of m (zI) is done for notational convenience. We will utilize this
notation when estimating bid functions.
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The ex ante expected payo¤ of the informed bidder is E
�
�ALCI

�
= 36:92.

The expected payo¤ of the uninformed bidder is E
�
�ALCU

�
= 29:72. The ex

ante expected revenue of an ALC is E
�
RALC

�
= 58:74:

Note that E
�
�ALCI

�
> E

�
�SLC

�
. This is a result of the private in-

formation held by the informed bidder. As such, we refer to E
�
�ALCI

�
�

E
�
�SLC

�
> 0 as the informed bidder�s information rent in an ALC. This is

a measure of the value of observing a private signal in a lottery contest.

3.2.3 Break-even Bidding Strategy in ALC

The break-even bidding strategy of an informed ALC bidder, when she ob-

serves zI is the largest bI that satis�es

bI
bI + 29:37

E (X j zI)� bI = 0.

That is, the break-even bidding strategy of the informed ALC bidder is

�ALCI (zI) =

8>>>>>>><>>>>>>>:

0 if zI 2 [17; 25:74)
zI+33
2
� 29:37 if zI 2 [25:74; 33)

zI � 29:37 if zI 2 [33; 217)
zI+217
2

� 29:37 if zI 2 [217; 233] .

For the uninformed bidder in an ALC, the break-even bidding strategy is
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the bid that satis�es

E

�
bU

bU + �
ALC (zI)

X

�
� bU = 0.

That is, the break-even bidding strategy for the uninformed bidder in an

ALC is �ALCU = 90:17.

3.3 Testable Hypotheses

Revenue predictions of all-pay auctions and lottery contests are not invari-

ant to the information structure. The ex ante expected revenue predictions

of each treatment where we have theoretical predictions are found above.

Notice that E
�
RALC

�
< E

�
RSLC

�
< E

�
RAAP

�
< E

�
RSAP

�
. When one

bidder observes a signal, she is expected to earn an information rent which

reduces expected revenue relative to the case where neither bidder observes a

signal. Also, holding the information structure constant, all-pay auctions are

expected to generate more revenue than lottery contests. These hypotheses

are summarized in Table 2.

Since all-pay auctions and lottery contests are constant sum games be-

tween the seller and the bidders, revenue and bidder payo¤s are closely re-

lated. When there is an information asymmetry as in our experimental de-

sign, the decrease in revenue relative to the symmetric information structure

in which neither bidder observes a signal must improve the expected payo¤s
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Table 2: Revenue ranking in decreasing order
Information structure Ex ante expected revenue

SAP 125
AAP 91:77
SLC 62:50
ALC 58:74

Table 3: Ranking of ex ante expected bidder payo¤s in decreasing order
Bidders Ex ante expected payo¤s

ALC-Informed 36:92
AAP-Informed 33:23

SLC 31:25
ALC-Uninformed 29:72

SAP 0
AAP-Uninformed 0

of at least one bidder. Who gets this decrease in revenue, the informed bid-

der, the uninformed bidder or both? There are a number of predictions with

regards to bidder payo¤s which we test. The ex ante expected payo¤s of bid-

ders are found above. Notice that, E
�
�AAPU

�
= E

�
�SAPi

�
< E

�
�ALCU

�
<

E
�
�SLCi

�
< E

�
�AAPI

�
< E

�
�ALCI

�
. These hypotheses are summarized in

Table 3.

Since E
�
�AAPU

�
= E

�
�SAPi

�
, a bidder who does not observe a private

signal in an all-pay auction has an expected pro�t of zero, regardless of

whether or not the other bidder observes a signal. This implies that, in

equilibrium, the ex ante expected payo¤ of a bidder who observes a signal

in an all-pay auction is a measure of the value of that signal, given the
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information structure. That is, an informed bidder�s ex ante expected payo¤

represents the expected information rent associated with the signal in an all-

pay auction.

Since E
�
�ALCU

�
> 0, E

�
�ALCI

�
is not the expected value of observing

a signal in a lottery contest. This value, or information rent, is given by

E
�
�ALCI

�
�E

�
�SLCi

�
. Notice that the expected information rent obtained

by an informed bidder is greater in an all-pay auction than in a lottery

contest.

4 Experimental Results

4.1 Revenue

Table 4 reports summary statistics of revenue. Average predicted revenue

was calculated using the realized value of the signal(s) and x. As a result,

the predictions where there is an informed bidder di¤ers slightly from the ex

ante revenue predictions. Note, however, that the revenue ranking remains

the same.

There are six revenue ranking predictions, which we test using the non-

parametric robust rank order test on session-level data.12 Predictions are

borne out between SAP and AAP auctions; we �nd support for the prediction that

12The critical values of the robust rank order test are found in Feltovich (2003).
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Table 4: Revenue aggregated across all rounds and sessions
Average observed Average predicted

revenue revenue
Treatment (standard deviation) (standard deviation)

SAP 119:09 125:00
(65:77) (0:00)

AAP 95:23 88:24
(69:31) (29:80)

SLC 96:76 62:50
(44:44) (0:00)

ALC 95:97 56:13
(56:83) (14:65)

E
�
RSAP

�
> E

�
RAAP

�
(robust rank-order test, �U = 2:36, p < 0:048). Fur-

ther, we �nd strong support for the predictions that E
�
RSAP

�
> E

�
RSLC

�
(robust rank-order test, �U = 7:19, p = 0:008) and E

�
RSAP

�
> E

�
RALC

�
(robust rank-order test, �U = n:d:, p = 0:004).13

We are, however, unable to reject equivalence between E
�
RSLC

�
and

E
�
RALC

�
(robust rank order test, �U = �0:09, n:s:). That is, our data indi-

cates that the presence of asymmetric information does not reduce revenue

in lottery contests, contrary to theory.

Interestingly, we are also unable to reject equivalence between E
�
RAAP

�
and E

�
RSLC

�
(robust rank order test, �U = �0:09, n:s:). Likewise, we are

13The highest average revenue observed within a group of ten participants in any ALC
session is lower than the lowest average reveune observed within a group of ten participants
any SAP session. As such, the test statistic of the robust rank order test is not de�ned.
We denote such a test statistic as �U = n:d:.
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unable to reject equivalence between E
�
RAAP

�
and E

�
RALC

�
(robust rank

order test, �U = �0:09, n:s:). This observed revenue equivalence between

the asymmetric information all-pay auction and the asymmetric information

lottery contest is surprising, given the magnitude of the di¤erence in the

theoretical predictions. The revenue in lottery contests, regardless of the

information structure is much higher than predicted. As such, the observed

revenue equivalence between the ALC, SLC and AAP treatments is largely

the result of signi�cant overbidding on the part of bidders in lottery contests.

4.2 Bidder Payo¤s

Table 5 provides summary statistics regarding bidder payo¤s. Average pre-

dicted payo¤s are calculated using the signals observed by participants. No-

tice that, on average, the only bidders who have positive payo¤s when not

observing a signal are bidders in symmetric information lottery contests.

We �nd, in keeping with theoretical predictions, that informed AAP bid-

ders earn signi�cantly more than uninformed AAP bidders (sign test, w = 46,

p < 0:001)14 and SAP bidders (robust rank-order test, �U = n:d:, p = 0:004).

That is, informed AAP bidders earn a signi�cant information rent by virtue

14In the asymmetric information treatments (AAP and ALC), participants switched
roles throughout the experiment. To test the prediction that informed bidders in asym-
metric information structures have greater expected pro�ts than their uninformed coun-
terparts, the average payo¤ of a participant when she was informed was matched with
the average payo¤ of that same participant when she was uninformed, for a total of 50
matched pairs. As such, the test of these predictions are within subject.
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Table 5: Bidder payo¤s aggregated over all rounds and sessions
Average observed Average predicted

payo¤s payo¤s
Bidders (standard deviation) (standard deviation)
SAP �1:72 0

(62:77) (0)
AAP-Informed 26:38 27:29

(59:50) (27:70)
AAP-Uninformed �6:08 0

(44:06) (0)
SLC 9:39 31:25

(68:58) (0)
ALC-Informed 22:72 31:20

(60:96) (26:85)
ALC-Uninformed �3:16 29:72

(54:68) (0)

of holding private information. As predicted by theory, we are unable to

reject that SAP bidders and uninformed AAP bidders have equal payo¤s

(robust rank-order test, �U = 0:669, n:s:). So, a bidder who does not observe

a signal is not made worse o¤when the other bidder does. This implies that

the positive information rent obtained on average by informed AAP bidders

is extracted from the seller.

Informed ALC bidders have higher payo¤s than uninformed ALC bid-

ders (sign test, w = 45, p < 0:001) and SLC bidders (robust rank-order

test, �U = 7:188, p = 0:008). Uninformed ALC bidders earn less than SLC

bidders (robust rank-order test, �U = 2:859, p = 0:028). So informed ALC

bidders earn a signi�cant information rent. Unlike all-pay auctions, unin-
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formed bidders in asymmetric information lottery contests are worse o¤ than

if neither bidder were informed. That is, the information rent that accrues

to informed ALC bidders is extracted, at least in part, from the uninformed

bidder.

These results have interesting implications in terms of the value of infor-

mation in contests, and are in line with theoretical predictions. In particular,

a bidder in a SAP auction is not worse o¤ if the other bidder were to observe

a signal, and would have no incentive to expend resources to prevent such an

information asymmetry. The same does not hold true in lottery contests.

An interesting question for further research would be whether or not an un-

informed bidder would be willing to pay to observe a signal that has been

observed by the other bidder. Theory predicts that a bidder in an all-pay

auction would be indi¤erent, while a bidder in a lottery contest would be

willing to expend resources to eliminate the information asymmetry.

As predicted by theory, SLC bidders have higher payo¤s than SAP bid-

ders (robust rank-order test, �U = 7:188, p = 0:008). Interestingly, we are

unable to reject that informed ALC bidders and informed AAP bidders have

equal payo¤s (robust rank-order test, �U = 0:435, n:s:). Likewise, we are

unable to reject that uninformed ALC bidders and uninformed AAP bidders

have equal payo¤s (robust rank-order test, �U = 0:473, n:s:). This yields ad-

ditional insight into the observed revenue equivalence between the ALC and

AAP treatments. In particular, it seems that the observed revenue equiva-
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lence between the AAP and ALC treatments is simply because bidders, both

informed and uninformed, are equally well o¤ under all-pay auctions and

lottery contests; the change in contest success function does not change the

welfare of bidders in an asymmetric information structure. Note that this

does not hold when neither bidder observes a signal. The imperfectly dis-

criminating contest success function actually makes bidders better o¤ than

the perfectly discriminating contest success function.

Lastly, we �nd that SAP bidders have lower payo¤s than informed ALC

bidders (robust rank-order test, �U = n:d:, p = 0:004), and are unable to reject

that SAP bidders and uninformed ALC bidders have equal payo¤s (robust

rank-order test, �U = 0:473, n:s:). We �nd that SLC bidders have higher

payo¤s than uninformed AAP bidders (robust rank-order test, �U = 7:188,

p = 0:008), and that SLC bidders have lower payo¤s than informed AAP

bidders (robust rank-order test, �U = 4:20, p < 0:028).

4.3 Break-even Bidding

In standard auctions, the bidders who do not win the auction do not expend

any money; their payo¤ from losing the auction is zero. As such, a bid above

the break-even bidding strategy is a bid above the expected value of the good,

conditional on winning the auction. In the experimental auction literature

it is widely observed that inexperienced bidders bid above the break-even

bidding strategy when they observe a private signal. Such bidders are said
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to fall victim to the winner�s curse.15 This �nding is very robust, and has

been observed in many di¤erent auction formats. However, Grosskopf et

al. (2010) �nds that bidders who do not observe a private signal in a �rst-

price, sealed-bid auction are much less prone to fall victim to the winner�s

curse than bidders who do observe a private signal. This �nding is true of

informed bidders who face informed opponents, and bidders who do not.

In contests, bidders must pay their bid whether or not they obtain the

good. As a result, the break-even bidding strategy in a contest (the bid above

which a bidder has a negative expected payo¤, given that the other bidder

is bidding according to equilibrium) is substantially less than the expected

value of the good, conditional on obtaining the good. Prior to this paper,

experimental analysis of contests have often observed signi�cant overbidding,

even in very simple environments. The benchmark against which this over-

bidding has been measured is the Nash equilibrium predictions. While we

do compare behavior to Nash predictions, we are interested in whether bid-

ders in common-value contests with incomplete information overbid such that

they guarantee themselves negative expected payo¤s, as bidders in standard

auctions do. We are also interested in the role of observing a private signal

on this overbidding. Does observation of such a signal make bidders more

prone to bid above the break-even bidding strategy?

Table 6 contains summary statistics regarding when bidders bid above

15See Kagel and Levin (2002) for an introduction to this literature.
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the break-even bidding strategy, aggregated across all rounds and sessions.

There are several things worth noting. First, on average, bidders who observe

a signal (i.e. informed bidders in the asymmetric information treatments) bid

above the break-even bidding threshold much more frequently than bidders

who do not observe a signal. Second, the proportion of informed AAP

and informed ALC bidders who bid above the break-even bidding threshold

is actually greater than the proportion such winning bids that fall above

the break-even threshold. This is largely due to the fact that for low signal

values, the break-even bidding strategy for informed bidders is quite low. As

such, for low signal values a bidder may bid above the break-even strategy,

and still be unlikely to obtain the good. Third, notice that informed AAP

bidders win almost 70% of the time. Theory predicts that the informed

and uninformed AAP bidders have an equal probability of obtaining the

good. Further, the informed ALC bidder wins just over 50% of the time,

while theory predicts that the uninformed ALC bidder has a higher ex ante

probability of obtaining the good.

Figure 1 illustrates how the bidders�propensity to bid above the break-

even bidding strategy varies as they gain experience. Note that as bidders

gain experience the frequency with which they bid more than their break-even

bidding strategy decreases. This is most pronounced for bidders who do not

observe a signal. Also, the bidders who do observe a signal are much more

likely to bid more than their break-even bidding strategy than uninformed
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Table 6: Bidding above the break-even bidding strategy aggregated across
all rounds and sessions

Frequency bid exceeds Frequency the
break-even bid: informed

All Winning bidder
Bidders bidders bidders wins
SAP 6:2% 12:1% NA

(93=1490) (90=745) NA
AAP-Informed 32:7% 30:4% 69:2%

(245=750) (158=519) (519=750)
AAP-Uninformed 4% 11:3% NA

(30=750) (26=205) NA
SLC 8:1% 12:1% NA

(122=1500) (91=750) NA
ALC-Informed 34:3% 32:8% 50:7%

(257=750) (168=512) (380=750)
ALC-Uninformed 8:3% 16% NA

(62=750) (38=238) NA
NA = not applicable.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.
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Figure 1: Frequency of bids above the break-even bidding strategy by period
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bidders. Indeed, in the last periods, many informed bidders bid continue

to bid above this break-even bidding threshold. In contrast, uninformed

bidders, regardless of whether or not they face an informed bidder, have

stopped bidding above this threshold almost entirely.

This interesting result is consistent with the behavior observed in Grosskopf

(2010) in the context of �rst-price, sealed-bid auctions; informed bidders are

much more likely to bid above a break-even bidding strategy than are unin-

formed bidders. As such, our data acts as a robustness test of the results of
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Grosskopf (2010). We have now observed this bidding behavior in three sep-

arate games: �rst-price auctions, all-pay auctions and lottery contests. As

before, we interpret this behavior as overcon�dence on the part of informed

bidders; informed bidders are overcon�dent regarding the value of observing

a private signal, and bid accordingly.16 In Appendix C, behavior when both

bidders in an all-pay auction observe a signal is analyzed. The same pat-

tern emerges; these informed bidders are much more prone to bid above the

break-even bidding threshold than are bidders in an all-pay auction who do

not observe a signal.

This behavior is particularly interesting in the context of contests, because

a bidder who loses must still pay her bid. As a result, there are two ways

in which a bid may result in negative payo¤s. First, an informed bidder

may bid more than the value of the good, and end up with a negative payo¤

despite obtaining the good. Second, the informed bidder may not obtain

the good, and still be forced to pay her bid. This is in contrast to �rst-price

auctions, in which the only way a bidder may end up with a negative payo¤

is by obtaining the good by bidding more than its value.

Figure 2 illustrates how the frequency with which winning bidders bid

more than the break-even bidding strategy changes as bidders gain experi-

ence. Here, the analysis is less clear. This is largely attributable to the

16Alexander Pope �rst addressed this hypothesis by writing: �A little learning is a
dangerous thing; drink deep, or taste not the Pierian spring: there shallow draughts
intoxicate the brain, and drinking largely sobers us again.�
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Figure 2: Frequency of winning bids above the break-even bidding strategy
by period
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fact that uninformed bidders who won when facing an informed bidder were

likely to have bid more than the break-even bidding threshold in order to do

so, while the other uninformed bidders typically bid conservatively and lost

as a result. Spikes in the proportion of winning bids of uninformed AAP

or ALC bidders who bid above the break-even bidding threshold re�ect this.

However, in later periods is it clear that informed winning bidders are much

more prone to bid above the break-even bidding threshold.
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Figure 3: The di¤erence between observed bids and break-even bids depend-
ing on the signal
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Figure 3 contains box plots which illustrate how the magnitude of the

di¤erence between observed bids and the break-even bidding threshold de-

pends on the signal observed by informed bidders. Interestingly, for small

signal values, this magnitude is larger than for large signals. This is true of

all informed bids, as well as winning informed bids. This is a consequence

of the fact that these bidders are facing uninformed opponents. Since an

uninformed bidder is unlikely to bid a large amount, an informed bidder who

observes a high signal is likely to win the contest, even if she bids much less
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than the value of the good. Taking this into account reduces her bid relative

to the break-even bidding threshold.

Notice that the range of the di¤erence between observed bids and the

break-even bidding threshold increase with signal size. This is a result of

the fact that for low signal values, the range of rationalizable bids is smaller

than when the observed signal is high. An informed bidder knows that the

value of the good will never exceed her signal by more than eight. Further,

she cannot bid less than zero. These bounds, or course, expand in the signal

size, and the range of bidding behavior expands as well.

Lastly, notice that for large signal values very few informed AAP bidders

bid more than the break-even bidding threshold. In contrast, a non-trivial

number of informed ALC bids fall above this threshold, for all but the highest

signals. In spite of this, recall that we are unable to reject payo¤ equivalence

between informed AAP and informed ALC bidders.

4.4 Bidding

We now compare the bidding behavior of participants across bidder types.

Several interesting observations arise. First, we �nd that informed AAP bid-

ders bid more than uninformed AAP bidders (sign test, w = 45, p < 0:001).17

This result is contrary to theory; the distribution of Nash equilibrium bids

17The average uninformed bid of a participant is paired with the average informed bid
of the same participant. As such, there are 50 observations for this test.
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for the informed AAP bidder is the same as that of the uninformed AAP

bidder. In lottery contests. we �nd that, contrary to theory, informed ALC

bidders are bidding more than uninformed ALC bidders (sign test, w = 45,

p < 0:001). Theory predicts that, ex ante, the expected bid of an uninformed

ALC bidder is equal to that of an informed ALC bidder (recall that the real-

ized signals in our design reduce the average predicted bid of informed ALC

bidders slightly). These two results, of course, are consistent with the hy-

pothesis that the observation of a private signal induces a bidder to increase

her bid, on average.

Comparing the behavior of bidders who do not observe signals yields

interesting results. SAP bidders bid more than uninformed AAP bidders

(robust rank-order test, �U = n:d:, p = 0:004).18 Likewise, SLC bidders bid

more that uninformed ALC bidders (robust rank-order test, �U = n:d:, p =

0:004). That is, in all-pay auctions and lottery contests, uninformed bidders

bid less if their opponent observes a signal than if they do not. This is

interesting, in light of the fact that a SAP bidder is not signi�cantly worse

o¤ than if her opponent were to observe a signal, while a SLC bidder is

signi�cantly better o¤ than if her opponent were to observe a signal. While

uninformed AAP bidders are able to reduce their bids relative to SAP bids

such that they avoid a reduced payo¤, uninformed ALC bidders are not.

18Since both SAP and uninformed AAP bidders are predicted to employ a mixed strat-
egy in equilibrium, we also employ a two sample Kolmogorov-Smirnov equaltiy of dis-
tributions test, in which the average uninformed bid of an individual participant is the
unit of observation. The null is strongly rejected (Kolmogorov-Smirnov test, D = 0:400,
p = 0:001).
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This is largely due to the fact that bidders in lottery contests have a positive

expected payo¤ regardless of the whether they, or their opponent, observe

a signal. In all-pay auctions, uninformed bidders have an expected payo¤

of zero, regardless of the information structure. As such, SLC bidders have

something to lose if their opponent were to observe a signal; SAP bidders do

not.

We are unable to reject the hypothesis that SAP and informed AAP

bidders bid the same amount (robust rank-order test, �U = 0:341, n:s:). This

result runs contrary to theory, because informed AAP bidders are expected

to bid less in equilibrium than SAP bidders. Similarly, in lottery contests

we �nd that informed ALC bidders bid more than SLC bidders (robust rank-

order test, �U = 2:064, p = 0:048), which is also contrary to theory; informed

ALC bidders are, ex ante, predicted to reduce their bids relative to SLC bids.

That informed bidders do not bid less than their symmetric information

counterparts suggests that informed bidders are not taking advantage of the

fact that their uninformed opponents are predicted to reduce their bids in

response to the asymmetric information, and may be overbidding relative to

Nash predictions as a result. This assertion is tested explicitly below.

In addition, we are unable to reject the hypothesis that informed AAP

bidders and informed ALC bidders bid the same amount (robust rank-order

test, �U = 0:088, n:s:). Likewise, we are unable to reject the hypothesis

that uninformed AAP bidders and uninformed ALC bidders bid the same
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amount (robust rank-order test, �U = �0:258, n:s:). Recall that we are also

unable to reject payo¤equivalence between informed AAP and informed ALC

bidders, as well as between uninformed AAP and uninformed ALC bidders.

Furthermore, we are unable to reject revenue equivalence between these two

asymmetric information treatments. Consequently, these results are not

surprising.

Lastly, SAP bidders bid more than SLC bidders (robust rank-order test,

�U = 7:188, p = 0:008). This result is consistent with theory. Likewise, it

is consistent with the existing literature. For example, Potters et al. (1998)

�nd that bidders in all-pay auctions bid more than bidders in lottery contests.

4.5 Nash Equilibrium

We now turn to the question of how bidders bid relative to the Nash equilib-

rium predictions. Table 7 contains summary statistics regarding observed

and predicted bids, using data aggregated across all rounds and sessions.

Average Nash equilibrium bids are calculated using realized signals, rather

than ex ante predictions. When Nash predictions involve mixed strate-

gies, the expected value and standard deviation of the mixed strategy are

reported. Notice that in the case of all-pay auctions, both SAP and un-

informed AAP bidders bid below Nash predictions, on average. In stark

contrast, informed AAP bidders bid a staggering 385:48% above Nash pre-

dictions, on average. Furthermore, informed ALC bidders overbid relative
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Figure 4: Equilibrium bid functions and observed bids
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to Nash predictions much more than SLC or uninformed ALC bidders on

average, although all bidders in lottery contests overbid.

Also of interest is the fact that bidders do bid positive amounts, even

when uninformed. This is of particular interest for uninformed bidders in

all-pay auctions because for every bid in the support of their respective mixed

strategies, they have an expected payo¤of zero. As such, uninformed bidders

are, in equilibrium,.indi¤erent between the Nash equilibrium mixed strategy,

and bidding zero with probability one. Indeed, uninformed AAP bidders

had negative payo¤s on average, but submitted positive bids 73:86% of the

time.

Figure 4 plots the equilibrium bid functions of informed bidders against

a scatterplot of the observed bids. Notice that a great many bids lie on the

45� line, for both informed AAP and informed ALC bidders. This indicates

that some bidders are naive, in that they simply bid their signal. Further,
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Table 7: Bids relative to the Nash equilibrium aggregated over all rounds
and sessions

Average Average Frequency
Nash percent of

Average equilibrium over positive
Bidders bid bid Nash bids
SAP 59:54 62:5a �4:73% 90:13%

(46:50) (36:08) (0:74) (1353=1490)
AAP-Informed 61:11 38:49 385:48% 98:40%

(50:54) (34:55) (20:54) (738=750)
AAP-Uninformed 34:13 45:89a �25:63% 73:86%

(42:99) (36:85) (0:94) (554=750)
SLC 48:38 31:25 54:81% 94:20%

(30:38) (0:00) (0:97) (1413=1500)
ALC-Informed 61:02 26:53 229:95% 99:73%

(44:30) (14:59) (6:83) (748=750)
ALC-Uninformed 34:95 29:37 19:00% 89:47%

(33:69) (0:00) (1:15) (671=750)
aThis is the expected value of the equilibrium mixed strategy.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.

most bids lie above the equilibrium bid function, indicating that informed

bidders tend to overbid relative to the Nash equilibrium.

For bidders whose Nash equilibrium bidding strategy is pure, we com-

pare bidding behavior using the nonparametric sign test. Accordingly, we

�nd that informed AAP bidders overbid relative to Nash predictions (sign

test, w = 41; p < 0:001).19 Further, informed ALC bidders overbid relative

19The unit of observation in this and subsequent sign tests is the average bid of an
individual participant. That is, the bid of an individual participant averaged over all
periods relative to the Nash equilibrium bid averaged over all periods. There are then 50
observations.
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Figure 5: SAP and Uninforrmed AAP cumulative distribution (all periods)
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to Nash predictions (sign test, w = 48; p < 0:001). As described above,

these informed bidders are prone to bidding in excess of the break-even bid-

ding strategy. This measure of overbidding is looser than Nash equilibrium

predictions. As such, it is hardly surprising to �nd that informed bidders

overbid relative to equilibrium. However, we also �nd that SLC bidders

overbid relative to Nash predictions (sign test, w = 41, p < 0:001). This

is in contrast to the results of Grosskopf et al. (2010), which found bidding

in �rst-price auctions was signi�cantly below Nash predictions when neither

bidder observed a signal. In lottery contests, then, observation of a signal

increases the magnitude of overbidding, rather than swinging a bidder to

overbidding from underbidding as in �rst-price auctions.

We are unable to reject that uninformed ALC bidders bid according to

the Nash equilibrium (two-tailed sign test, w = 27; p = 0:6718).20 That is,

20If we assume that participant�s bids are independent over time, such that there are 750
observations, we �nd that uninformed ALC bidders underbid relative to Nash predictions,
although this result is only marginally signi�cant (sign test, w = 397, p = 0:0582).

46



the only bidders in lottery contests who bid according to Nash predictions

are uninformed ALC bidders.

Next, recall that there are two types of bidders whose Nash equilibrium

involves a mixed strategy: SAP and uninformed AAP bidders. The support

for both of these equilibrium mixed strategies is [0; 125]. As such, we do

not have point predictions for these bidders. Comparing the expected value

of the equilibrium mixed strategy with the average bid tells us that, on

average, uninformed AAP bidders are underbidding. The same is true of

SAP bidders, although the di¤erence is small. To test whether observed

distribution of bids is consistent with the CDF of the equilibrium mixed

strategies, we employ the nonparametric Kolmogorov�Smirnov test. We

reject the hypothesis that the observed distribution of uninformed AAP bids

is equal to that of the equilibrium mixed strategy (Kolmogorov�Smirnov test,

D = 0:1943, p = 0:0459).21 However, we are unable to reject the hypothesis

that the observed distribution of SAP bids is equal to that of the equilibrium

mixed strategy (Kolmogorov�Smirnov test, D = 0:1030, p = 0:6630).22

Figures 5 and 6 yield additional insight. Figure 5 plots the empirical

cumulative distribution of bids in all periods against the distribution func-

tion of the equilibrium mixed strategy for both SAP and uninformed AAP

21The unit of observation is the average uninformed AAP bid of an individual partici-
pant.
22If we assume that an individual participant�s bids are independent over time, such that

there are 1490 independent observations, then the Null is strongly rejected (Kolmogorov�
Smirnov test, D = 0:8013, p < 0:001).
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Figure 6: SAP and Uninforrmed AAP cumulative distribution (periods 1-10
and 21-30)
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bidders. For SAP bidders, there are more bids at both tails than predicted

by theory. However, for uninformed AAP bidders, the empirical distribution

is almost entirely to the left of the Nash distribution, save for several bids in

at the right tail. Figure 6 restricts attention to the �rst and last ten periods.

In the �rst ten periods, both uninformed AAP and SAP bidders have more

bids on the right tail than predicted. However, in the last ten periods the

empirical distribution of SAP bids has shifted dramatically to the left, such

that the equilibrium mixed strategy lies almost entirely to the right of the
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empirical distribution. The change is even more dramatic for uninformed

AAP bidders. In the last ten rounds the empirical distribution is far to the

left of the equilibrium distribution. Clearly, as SAP and uninformed AAP

bidders gain experience they reduce their bids such that, on average, they

are underbidding.

The above analysis of uninformed AAP and SAP bids relies on aggre-

gated data. Of interest is whether or not an individual participant is mixing

at all, regardless of the distribution. Examining the behavior of bidders

over time clearly demonstrates that they are not. A participant in a SAP

session bids her modal bid 32:48% of the time. While the equilibrium dis-

tribution function for SAP bidders is continuous on [0; 125], SAP bids are

integers 69:93% of the time, and are multiples of �ve 49:4% of the time. For

uninformed AAP bidders, an individual bids her modal uninformed AAP bid

44:00% of the time. Uninformed AAP bids are integers 81:07% of the time,

and multiples of �ve 61:73% of the time. Clearly, these bidders are not mix-

ing continuously. The fact that the modal bids are submitted so frequently

suggests that they are not mixing at all.

4.6 Estimating Bid Functions

In estimating bid functions, we employ a random e¤ects Tobit estimation

to control for correlation of participant behavior over time, and the fact

that bids were restricted to be within the interval [0; 225]. We restrict our
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attention to observations in which the observed signal (or the signal that a

bidder would have observed had she been informed) is in the interval [33; 217),

where the majority of observations lie.

The speci�cation for bidders who do not observe a signal (SAP, SLC,

uninformed AAP, and uninformed ALC bidders) is given by

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �i + �it;

where bit is participant i�s bid in period t, zit is the (unobserved) signal of

participant i in period t, Mi is equal to one if participant i is a male, and

ln (1 + t) captures learning.23 This speci�cation is estimated separately for

each type of uninformed bidder, for a total of four such estimations. Recall

that SAP and uninformed AAP bidders are predicted to employ a mixed

strategy in equilibrium. We justify our estimation of bid functions for these

bidders by noting that the data demonstrates that these bidders are not mix-

ing. We include zit as a test of whether or not the signal which would have

been observed by the bidder if she were informed has any explanatory value.

In each contest (there are 150 contests in each group of ten contestants) a

realization of the good was drawn, as well as two signals, which are indepen-

dent conditional on the realized value of the good. These same realizations

were used for each group of ten participants, for all treatments (these are the

23Since period de�nes the panel, it cannot be included as a covariate. The inclusion of
ln (1 + t) captures learning. Moreover, since ln (1 + t) is nonlinear in t, it takes account
of diminishing returns to learning.
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same realizations used in Grosskopf et al. (2010)). As such, in SAP and

SLC sessions, neither bidder in any given contest observed the signal that

was �assigned�to them. In AAP and ALC treatments, one of the bidders

was randomly chosen to observe one of the signals. The other bidder did

not observe one, although there was one �assigned�to them. We also ran

sessions with all-pay auction in which both bidders observed the signal that

was �assigned�to them. For SAP, SLC, uninformed AAP and uninformed

ALC bidders, the (unobserved) signal that was assigned to them should not

have any predictive power concerning bidding behavior. Inclusion of this

signal as a covariate tests this assertion.

Following Casari et al. (2007), we also employ speci�cations which in-

teract gender and learning. Casari et al. (2007) �nds that women initially

bid more than men, but that they learn faster than men such that bidding

behavior quickly converges. We are interested in whether or not this ob-

servation holds in the context of contests. The speci�cation for uninformed

bidders which includes gender and learning interaction is given by

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi � ln (1 + t) + �i + �it:

For informed AAP bidders, the speci�cation without the gender and

learning interaction is given by

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4g (zit) + �i + �it;
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where g (zit) is the nonlinear portion of the informed AAP equilibrium bid

function when zit 2 [33; 217). Furthermore, the informed AAP speci�cation

with the gender and learning interaction is given by

bit = �0+ �1zit+ �2Mi+ �3 ln (1 + t) + �4Mi � ln (1 + t) + �5g (zit) +�i+ �it:

Similarly, when estimating bid functions for informed ALC bidders, the

speci�cation without the gender and learning interaction is

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4m (zit) + �i + �it;

where m (zit) is the nonlinear equilibrium bid function of informed ALC bid-

ders when zit 2 [33; 217). By including both zit and m (zit), we are testing

whether informed ALC bidders bid according to a linear function of their

signal, or whether they bid according to the nonlinear bid function, as pre-

dicted by theory. With the gender and learning interaction the speci�cation

is

bit = �0+�1zit+�2Mi+�3 ln (1 + t)+�4Mi � ln (1 + t)+�5m (zit)+�i+ �it:

Lastly, we jointly estimate bid functions. Without the gender and learn-

ing interaction the speci�cation is

52



bit = �0 + �1zit + �2Mi + �3 ln (1 + t)

+�4IAAPit + �5UAAPit + �6SLCit + �7IALCit + �8UALCit

+�9IAAPit � zit + �10UAAPit � zit + �11SLCit � zit

+�12IALCit � zit + �13UALCit � zit + �14IAAPit �Mi

+�15UAAPit �Mi + �16SLCit �Mi + �17IALCit �Mi

+�18UALCit �Mi + �19IAAPit � ln (1 + t) + �20UAAPit � ln (1 + t)

+�21SLCit � ln (1 + t) + �22IALCit � ln (1 + t) + �23UALCit � ln (1 + t)

+�24IAAPit � g (zit) + �25IALCit �m (zit) + �i + �it;

where IAAPit is a dummy variable for informed AAP bidders, UAAPit is a

dummy for uninformed AAP bidders, SLCit is a dummy for SLC bidders,

IALCit is a dummy variable for informed ALC bidders, and UALCit is a

dummy variable for uninformed ALC bidders. When the gender and learning
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interaction, the joint speci�cation is

bit = �0 + �1zit + �2Mi + �3 ln (1 + t)

+�4IAAPit + �5UAAPit + �6SLCit + �7IALCit + �8UALCit

+�9IAAPit � zit + �10UAAPit � zit + �11SLCit � zit + �12IALCit � zit

+�13UALCit � zit + �14IAAPit �Mi + �15UAAPit �Mi

+�16SLCit �Mi + �17IALCit �Mi + �18UALCit �Mi

+�19IAAPit � ln (1 + t) + �20UAAPit � ln (1 + t) + �21SLCit � ln (1 + t)

+�22IALCit � ln (1 + t) + �23UALCit � ln (1 + t)

+�24IAAPit �Mi � ln (1 + t) + �25UAAPit �Mi � ln (1 + t)

+�26SLCit �Mi � ln (1 + t) + �27IALCit �Mi � ln (1 + t)

+�28UALCit �Mi � ln (1 + t) + �29IAAPit � g (zit)

+�30IALCit �m (zit) + �i + �it;

Table 8 contains estimated bid functions without the gender and learning

interaction, and Table 9 contains estimated bid functions with the gender

and learning interaction.

Notice that, as expected, the (unobserved) signal is not signi�cant in

the estimated bid functions of SAP, SLC, uninformed AAP and uninformed

ALC bidders. Conversely, the (observed) signal is highly signi�cant in the

estimated bid function of informed AAP and informed ALC bidders. In-
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terestingly, in the joint speci�cations, the coe¢ cient on signal is larger for

informed ALC bidders than for informed AAP bidders. Also of interest is

the fact that the nonlinear part of the informed AAP bidder�s bid function

(g (zit)) is not signi�cant. A similar result is found for informed ALC bid-

ders; the coe¢ cient of the signal is positive and highly signi�cant, and the

nonlinear informed ALC bidder�s bid function (m (zit)) in not signi�cant. As

such, it is clear that informed bidder�s bid function is linear in their signals,

contrary to theory.

Interestingly, the results regarding learning di¤er substantially across

treatments, when we do not include the gender and learning interaction.

In SAP auctions, participants learn relatively slowly to reduce their bids as

they gain experience. The same holds for SLC bidders. The fact that SLC

bidders learn slowly is surprising, since they are, on average, bidding more

than equilibrium predictions. However, as discussed above, SLC bidders

are typically not bidding more than the break-even bidding strategy. As

such, most SLC bidders are earning positive payo¤s on average. These aver-

age positive payo¤s are less likely to reduce bidding behavior than negative

payo¤s.

In stark contrast, informed AAP and informed ALC bidders learn to

reduce their bids much faster than SAP and SLC bidders. We attribute this

to the fact that these informed bidders are much more prone to bid above

the break-even bidding strategy than are uninformed bidders. The resulting
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negative payo¤s provides a strong incentive for these bidders to reduce their

bids. It is important to recall that when informed bidders observe a high

signal, they bid above the break-even bidding strategy infrequently. When

they observe a small signal, the probability of obtaining the good is small,

because the uninformed bidder cannot take the low value of the good into

account when choosing her bid. If the informed bidder does not take this into

account by, in some sense, ceding the contest to the uninformed bidder she is

likely to bid such that she loses the contest and still must pay her bid. This

process is, for the most part, the mechanism through which informed bidders

learn to reduce their bids. Notice that this allows the average payo¤ of the

informed bidders to be quite high (since they are likely to earn a substantial

payo¤ for high signal values), while still facing negative payo¤s which induce

learning that is quicker than that of uninformed bidders.

Also, notice that uninformed AAP bidders learn to reduce their bids faster

than SAP bidders, but uninformed ALC bidders do not. This is attribut-

able to the fact that, on average, uninformed AAP bidders quickly learn

that when they obtain the good, it is because the informed AAP bidder has

observed that it is low valued. This induces the uninformed AAP bidders

to reduce their bids faster than SAP bidders, who do not face this �win-

ner�s curse.� On the other hand, an uninformed ALC bidder has a positive

probability of obtaining the good, regardless of the informed ALC bidder�s

bid, provided she has submitted a positive bid of her own.24 As such, un-

24Note that this argument neglects the boundary case in which neither bidder submits
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informed ALC bidders often obtain the good, and earn a substantial payo¤

in the process. Consequently, they have less incentive to reduce their bids

than the uninformed AAP bidders.

Interestingly, when we do not include the gender and learning interaction,

there are signi�cant gender di¤erences. In particular, notice that women bid

more than men everywhere except in symmetric information lottery contests

(although the magnitude of this di¤erence is quite small in the case of unin-

formed AAP bidders). Clearly this fact is not simply a consequence of the

imperfectly discriminating contest success function; women bid more than

men in asymmetric information lottery contests, regardless of whether or not

they are informed.

Notice that when we include the gender and learning interaction, it is

not signi�cant in all-pay auctions, regardless of the information structure.

Indeed, inclusion of this interaction renders the gender dummy insigni�cant

for SAP and uninformed AAP bidders, and only marginally signi�cant for

informed AAP bidders. Further, note that when we include the gender

and learning interaction, the gender dummy in the SLC treatment is also no

longer signi�cant.

In contrast, note that inclusion of this gender and learning interaction

does not render the gender dummy insigni�cant for ALC bidders, regardless

of whether or not they are informed. Indeed, the magnitude of the coef-

a positve bid. As this case does not arise in our data, there is no need to consider it.
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�cients has increased. Also, the gender and learning interaction itself is

signi�cant for informed and uninformed ALC bidders. That is, we �nd that

in asymmetric information lottery contests, women bid more than men, but

also learn faster. This result does not extend to other treatments.

5 Conclusion

We have experimentally examined the role of asymmetric information in two

types of contests: all-pay auctions and lottery contests. In particular, we

examine these contests in a common-value environment in which there is

uncertainty regarding the value of the good. We employ a 2 � 2 between

subject design which varies the information structure of the game and the

contest success function. In the symmetric information structure, neither

bidder observes a signal regarding the value of the good; both bidder know

only the distribution from which the value is drawn. In the asymmetric

information structure, one of the bidders is randomly chosen to privately

observe a signal in the form of a noisy estimate of the value of the good.

The other bidder does not observe a signal, and holds no private information.

The two contest success functions we utilize in our design represent opposite

extremes of discrimination. At one end, there is perfectly discriminating

contest success function, which allocates the good to the bidder with the

highest bid with certainty. At the other, there is the lottery contest success

function which allocates the good to each bidder with probability equal to
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her proportion of the sum of bids.

In addition to the 2 � 2 design outlined above, we also ran sessions in

which participants played a series of all-pay auctions where both bidders

observe a private signal. While we do not have theoretical predictions for

this game, behavior in this environment is of interest in light of the fact that

bidders who observe a signal in �rst-price auctions are much more prone to

bid above their break-even bid, regardless of whether or not their opponent

observed a signal (Grosskopf et al. 2010). As such, we ran these additional

sessions to compare behavior in all-pay auctions to behavior in �rst-price

auctions.

Perhaps the most interesting result is that bidders in asymmetric infor-

mation treatments who observe a signal are much more prone to bid above

their break-even bidding strategy than are bidders who do not observe a sig-

nal. Similarly, we �nd that when both bidders in an all-pay auction observe

a signal, they are much more likely to bid above their break-even bidding

strategy than are bidders who do not observe a signal. As such, the results

of Grosskopf et al. (2010) do extend to all-pay auctions.

We also �nd that when neither bidder observes a signal, all-pay auctions

generate more revenue than lottery contests. Consequently, bidders in such

all-pay auctions earn more than bidders in lottery contests, on average. In-

terestingly the same does not hold when information is asymmetric. We are

unable to reject revenue equivalence between asymmetric information all-pay
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auctions and asymmetric information lottery contests. Further, we are un-

able to reject payo¤ equivalence between uninformed bidders in these two

asymmetric information games. Likewise, we are also unable to reject payo¤

equivalence between the informed bidders in these asymmetric information

games.

Another interesting result we �nd is that, in asymmetric information

lottery contests, women bid signi�cantly more than men in early periods,

but learn at a faster rate than men such that behavior converges in later

periods. This result does not extend to the other treatments.

Our results suggest several questions which provide avenues for future

research. First, what induces informed bidders to overbid so dramatically?

Is it that the information is privately observed? Second,.what happens to

behavior as the quality of the signal decreases? Third, does the observed rev-

enue equivalence in the asymmetric information treatments extend to other

games? Lastly, how much are bidders willing to pay for a signal? Could a

seller increase revenue by selling signals?
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6 Appendix A

This appendix supplies a general proof of the equilibrium in an AAP auction:

In a �rst price sealed bid auction, each bidder submits a bid, and the

highest bid wins with certainty. In the �rst price all-pay auction, every

bidder must pay his/her bid.

Consider the �rst-price all-pay auction where the value of the prize has a

common, but uncertain, value. This value, X, has the distribution function

H (x), with support contained in [0;1) It is assumed that E (X) <1. Let

there be two risk neutral bidders, one of whom observes an informative signal,

Z, regarding the value of the good prior to bidding. The other bidder knows

only the distributions from which both these random variables are drawn.

Let V = E (X j Z), and let F (v) denote the distribution function of V ,

which is assumed to be absolutely continuous. Let the informed bidder be

bidder one, and the uninformed bidder be bidder two.

Proposition 1 The following strategies characterize an equilibrium in this

game:

Bidder one bids:

� (v) = F (v)E (V j V � v) :

Bidder two mixes on the interval [0; E (V )], where the probability that she

bids x is:
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G (x) = Prob [F (v)E (V j V � v) � x] :

Proof. Note that if both bidders bid according to the strategy outlined above,

and bidder two bids x 2 [0; E (V )], and wins, her expected payo¤ will be:

E (V j � (V ) < x)� x

=
�
�
��1 (x)

�
F
�
��1 (x)

� � x
=

x

F
�
��1 (x)

� � x:
Further, if bidder two bids x and loses, her payo¤ is �x. Thus, the expected

payo¤ of bidding x is:

E (U2) =

 
x

F
�
��1 (x)

� � x!Prob (x wins)� x (1� Prob (x wins))
=

 
x

F
�
��1 (x)

� � x!Prob (� (V ) < x)� x (1� Prob (� (V ) < x))
=

 
xProb (� (V ) < x)
F
�
��1 (x)

� � x
!

= 0:

Thus, the uninformed bidder is indi¤erent over the interval [0; E (X0)]. Now

consider the case in which the informed bidder bids � (z) when he observes v.

If the uninformed bidder is following the equilibrium strategy outlined above,
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then the expected payo¤ for the informed bidder is:

E (U1) = G (� (z)) v � � (z)

= Prob (� (V ) � � (z)) v � � (z)

= Prob (V � z) v � � (z)

= F (z) v � � (z)

Di¤erentiating this with respect to z yields:

f (z) v � d

dz
� (z)

= f (z) v � d

dz
F (z)E (V j V � z)

= f (z) v � d

dz

zR
0

tdF (t)

= f (z) v � zf (z)

= f (z) (v � z)

Notice that bidding where v 6= z diminishes the expected payo¤ of the informed

agent, and so he should bid � (v).

Proposition 2 In equilibrium, the informed bidder�s ex ante expected payo¤

is Z 1

0

(1� F (z))F (z) dz:

Proof. When an informed bidder bids z, he wins with probability F (z).
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His payo¤ is thus

�1 (z) = F (z) v � � (z)

= F (z) v � F (v)E (V j V � v)

= F (z) v � F (z) v +
Z z

0

F (t) dt

=

Z z

0

F (t) dt:

Integrating this over z gives us

E (�1) =

Z 1

0

Z z

0

F (t) dtf (z) dz

=

Z 1

0

F (z)

�Z 1

z

f (t) dt

�
dz

=

Z 1

0

(1� F (z))F (z) dz:

7 Appendix B

7.1 Preliminaries

The common value of the available good, X, is drawn from a uniform distri-

bution on the interval [x; x]. The realization of this value, x, is not observed

by the two bidders before placing their bids. However, the distribution from

which it is drawn is common knowledge.
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In asymmetric information treatments, the informed bidder observes an

estimate of the realized value of the good. This estimate is the realization of

X plus an error term XI . This error term is U (��; �), and is independent

of X. That is, the estimate is a realization of ZI = X +XI :(We denote the

distribution function of ZI as FZI ). Throughout, we use fA to denote the

density function of the random variable A. A joint density function will be

denoted as f (x) where the vector x indicates the random variables to which

f (x) pertains.

Since ZI is simply the sum of independent random variables, it�s density

function is easily calculated. To do so, we use the following, well known,

formula:

fZI (zI) =

1Z
�1

fX (zI � x) fX (x) dx

=

�Z
��

fX (zI � x) fX (x) dx:
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This becomes a piecewise linear function:

fZI (zI) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

zI�xZ
��

�
1

2�(x�x)

�
dx = zI+��x

2�(x�x) if zI 2 [x� �; x+ �)

�Z
��

�
1

2�(x�x)

�
dx = 1

(x�x) if zI 2 [x+ �; x� �)

�Z
zI�x

�
1

2�(x�x)

�
dx = ��zI+x

2�(x�x) if zI 2 [x� �; x+ �] :

The distribution function of ZI is

FZI (c) =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

cZ
x��

z+��x
2�(x�x)dz if c 2 [x� �; x+ �)

x+�Z
x��

z+��x
2�(x�x)dz +

cZ
x+�

1
(x�x)dz if c 2 [x+ �; x� �)

x+�Z
x��

z+��x
2�(x�x)dz +

x��Z
x+�

1
(x�x)dz +

cZ
x��

��z+x
2�(x�x)dz if c 2 [x� �; x+ �] :
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This reduces to:

FZI (c) =

8>>>>>>>>>><>>>>>>>>>>:

(c�x+�)2
4�(x�x) if c 2 [x� �; x+ �)

c�x
(x�x) if c 2 [x+ �; x� �)

x�x��
(x�x) +

(x+3��c)(c�x+�)
4�(x�x) if c 2 [x� �; x+ �] :

It is easy to check that the joint density function of X and ZI is given

by:

f (x; zI) =
1

2� (x� x) :

The density function of X given the realized value of ZI is:

fX (x j zI) =

8>>>>>>>>>><>>>>>>>>>>:

1
zI+��x if zI 2 [x� �; x+ �)

1
2�

if zI 2 [x+ �; x� �)

1
��zI+x if zI 2 [x� �; x+ �] :

7.2 Equilibrium Bidding in SAP

Theorem 1 in Baye et al. (1996) demonstrates that in any Nash equilibrium

of this game, the expected payo¤ of both bidder�s is zero, and that both

bidders randomize continuously on [0; E (X)]. In a symmetric equilibrium,
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this implies that for any bi 2 [0; E (X)]

�SAPi (bi) = K (bi)E (X)� bi = 0

where K (�) is the distribution function of the symmetric equilibrium mixed

strategy. Thus,

K (bi) =
bi

E (X)
.

Since both bidders have expected payo¤s of zero, the expected revenue of

this auction is E (X).

7.3 Equilibrium Bidding in AAP

Appendix A provides the unique equilibrium of this game. In this equi-

librium, when the informed bidder observes zI he/she bids according to the

function

� (zI) = FzI (zI)E (E (X j ZI) j ZI � zI)

=

Z zI

x��
E (X j ZI = s) fZI (s) ds:

When zI 2 [x� �; x+ �), this is

� (zI) =

Z zI

x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds

=
(2x+ zI + �) (zI � x+ �)2

12� (x� x) :
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When zI 2 [x+ �; x� �) this is

� (zI) =

Z x+�

x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds+

Z zI

x+�

s

�
1

(x� x)

�
ds

=
3z2I + �

2 � 3x2
6 (zI � x)

:

When zI 2 [x� �; x+ �] this is

� (zI) =

Z x+�

x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds+Z x��

x+�

s

�
1

(x� x)

�
ds+Z zI

x��

�
x+ s� �

2

��
x+ � � s
2� (x� x)

�
ds:

=
2x3 + (zI � �)3 + 6x2� � 3x2 (zI + �)

12� (x� x)

That is, the equilibrium bid function for the informed bidder in AAP auctions

is

� (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(2x+zI+�)(zI�x+�)2
12�(x�x) if zI 2 [x� �; x+ �)

3z2I+�
2�3x2

6(zI�x) if zI 2 [x+ �; x� �)

2x3+(zI��)3+6x2��3x2(zI+�)
12�(x�x) if zI 2 [x� �; x+ �] :

In equilibrium, the uninformed bidder will mix on the interval [0; E (X)]
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according to the following distribution function:

J (b) = Prob [� (ZI) � b]

= FZI
�
��1 (b)

�
:

So, the uninformed bidder will mix according using this distribution function:

J (b) =

8>>>>>>>>>>><>>>>>>>>>>>:

(��1(b)�x+�)
2

4�(x�x) if b 2 [� (x� �) ; � (x+ �))

��1(b)�x
(x�x) if b 2 [� (x+ �) ; � (x� �))

4�(x�x��)+(x+3����1(b))(��1(b)�x+�)
4�(x�x) if b 2 [� (x� �) ; � (x+ �)] :

The expected payo¤ of the informed bidder is given by:

�AAPI (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(zI�x+�)3
12�(x�x) if zI 2 [x� �; x+ �)

3(x�zI)2��2
6(x�x) if zI 2 [x+ �; x� �)

(x�zI+�)3
24�(x�x) +

(x+zI��)
2

� (x�x)
2
: if zI 2 [x� �; x+ �] :
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The ex ante expected payo¤ of the informed bidder is

E
�
�AAPI

�
=

Z x+�

x��
�AAPI (zI) dzI

=
5 (x� x)3 � 10�2 (x� x) + 8�3

30 (x� x)2
:

For the parameters employed in our design, E
�
�AAPI

�
= 33:2301. Recall

that the uninformed bidder has an expected payo¤ of zero.

The ex ante expected revenue for the seller is found by subtracting the

ex ante expected payo¤ of the informed bidder from the expected value of

X. This yields

E
�
RAAP

�
= E (X)� E

�
�AAPI

�
=

�
x+ x

2

�
� 5 (x� x)

3 � 10�2 (x� x) + 8�3

30 (x� x)2
:

For the parameter values used in our design E
�
RAAP

�
= 91:7699.

7.4 Equilibrium Bidding in SLC

Recall that the probability that player i will obtain the good is given by:

pi (bi; bj) =

8><>:
bi

bi+bj
if max fbi; bjg 6= 0

1
2

if bi = bj = 0
.

We assume that the marginal cost of bidding is constant and equal to
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one. Bidder i�s seeks to maximize his expected payo¤ which is given by:

�SLCi = pi (bi; bj)E (X)� bi.

This expenditure function is strictly concave in xi given xj. As discussed

above, bidding zero is not an equilibrium strategy, so the best response is

determined by the following �rst order condition:

bjE (X)

(bi + bj)
2 � 1 = 0.

Utilizing the fact that the bidders are symmetric, this yields the equilibrium

bids of:

bi = bj =
E (X)

4
:

Using these equilibrium bids, we can easily calculate the equilibrium expected

payo¤ of the bidders:

�SLCi = pi2

�
E (X)

4
;
E (X)

4

�
E (X)� E (X)

4

=
E (X)

2
� E (X)

4

=
E (X)

4
.

Revenue in this game is the expected value of the good less the expected

payo¤s of the bidders. Therefore, the expected revenue in this treatment,

E
�
RSLC

�
, is E(X)

2
.
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7.5 Equilibrium Bidding in ALC

This game is similar to the setup analyzed in [23]: However, in our design the

informed bidder is not perfectly informed as to the value of the good. This

game is a special case of the model analyzed in the last period of [20]. If

a (z) = max (x; z � �) and b (z) = min (x; z + �), then the informed bidder�s

problem is:

�ALCI (zI) =

Z b(zI)

a(zI)

�
�ALC (zI)

�ALC (zI) + bALCU

�
xf (x j zI) dx� �ALC (zI)

=

�
�ALC (zI)

�ALC (zI) + bALCU

�
E (X p zI)� �ALC (zI) ,

where bALCU is the bid of the uninformed ALC bidder. As in the SLC, this

function is strictly concave given the bid of the uninformed bidder. The �rst

order condition is:
bALCU E (X p zI)�
�ALC (zI) + bALCU

�2 � 1 = 0.
Any �ALC (zI) > 0 makes this condition negative if bALCU > E (X p zI) :

Thus, the best response function of the informed bidder is:

�ALC (zI) =

8><>:
p
bALCU E (X p zI)� bALCU if zI � q�1

�
bALCU

�
0 if zI < q

�1 �bALCU

�
:

where q (z) = E (X p zI), and q�1 (�) is the inverse of q (�).
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The uninformed bidder�s problem is given by:

�ALCU =

Z x+�

x��

Z x

x

bALCU

�ALC (zI) + bALCU

xf(x; zI)dxdzI � bALCU

This yields the following �rst order condition:

Z x+�

x��

Z x

x

�ALC (zI)�
�ALC (zI) + bALCU

�2xf(x; zI)dxdzI � 1 = 0
Plugging in the informed bidder�s best response function and simplifying

characterizes the equilibrium in this game:

1 =

 
1p
bALCU

!Z x+�

q�1(bALCU )

p
E (X p zI)f (zI) dzI �

�
1� FZI (q�1

�
bALCU

�
)
�
:

In our experimental design bALCU = 29:37.

The uninformed bidder�s expected payo¤ is given by:

E
�
�ALCU

�
=

Z q�1(bALCU )

x��

Z x

x

xf(x; zI)dxdzI + b
ALC
U

�
1� FZI (q�1

�
bALCU

�
)
�
:

For the parameter values employed in our experimental design, E
�
�ALCU

�
=

29:72:

The expected payo¤ of the informed bidder when he/she observes an
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estimate ZI = zI is given by:

�ALCI (zI) =

8><>: 0 if z < q�1
�
bALCU

�
E (X j zI)� 2

p
bALCU E (X j zI) + bALCU if z � q�1

�
bALCU

�
:

The ex ante expected payo¤ of the informed bidder is given by:

E
�
�ALCI (zI)

�
=

Z x+�

q�1(bALCU )

Z x

x

xf(x; zI)dxdzI�bALCU

�
3� FZI

�
q�1
�
bALCU

���
:

For the parameter values employed in our experiment, E
�
�ALCI (zI)

�
=

36:92.

The ex ante expected revenue in this treatment is found by adding the

expected equilibrium bid of the informed ALC bidder and the equilibrium

bid of the uninformed ALC bidder. In our experimental design this is

E
�
RATC

�
= 58:74.

References

[1] Armantier, O. Does observation in�uence learning? Games and

Economic Behavior 46, 2 (2004), 221�239.

[2] Athey, S. Single crossing properties and the existence of pure strategy

equilibria in games of incomplete information. Econometrica (2001),

861�889.

77



[3] Barut, Y., Kovenock, D., and Noussair, C. N. A comparison of

multiple-unit all-pay and winner-pay auctions under incomplete infor-

mation. International Economic Review 43, 3 (2002), 675�708.

[4] Baye, M., Kovenock, D., and De Vries, C. The all-pay auction

with complete information. Economic Theory 8, 2 (1996), 291�305.

[5] Cornes, R., and Hartley, R. Asymmetric contests with general

technologies. Economic Theory 26, 4 (2005), 923�946.

[6] Engelbrecht-Wiggans, R., Milgrom, P. R., and Weber, R. J.

Competitive bidding and proprietary information. Journal of Mathe-

matical Economics 11, 2 (1983), 161�169.

[7] Feltovich, N. Nonparametric tests of di¤erences in medians: Com-

parison of the Wilcoxon�Mann�Whitney and robust rank-order tests.

Experimental Economics 6, 3 (2003), 273�297.

[8] Fischbacher, U. z-Tree: Zurich toolbox for ready-made economic

experiments. Experimental Economics 10, 2 (2007), 171�178.

[9] Fu, Q. Endogenous timing of contest with asymmetric information.

Public Choice 129, 1 (2006), 1�23.

[10] Gneezy, U., and Smorodinsky, R. All-pay auctions: An experimen-

tal study. Journal of Economic Behavior & Organization 61, 2 (2006),

255�275.

78



[11] Grosskopf, B., Rentschler, L., and Sarin, R. An experimen-

tal investigation of asymmetric information in common-value auctions.

Working Paper, Texas A&M University (2009).

[12] Hurley, T. M., and Shogren, J. F. E¤ort levels in a cournot nash

contest with asymmetric information. Journal of Public Economics 69,

2 (1998), 195�210.

[13] Kagel, J. H., and Levin, D. Common value auctions and the win-

ner�s curse. Princeton University Press, Princeton, N.J., 2002.

[14] Konrad, K. Strategy and dynamics in contests. Oxford University

Press, USA, 2009.

[15] Millner, E. L., and Pratt, M. D. An experimental investigation of

e¢ cient rent-seeking. Public Choice 62, 2 (1989), 139�151.

[16] Millner, E. L., and Pratt, M. D. Risk-aversion and rent-seeking

- an extension and some experimental-evidence. Public Choice 69, 1

(1991), 81�92.

[17] Noussair, C., and Silver, J. Behavior in all-pay auctions with in-

complete information. Games and Economic Behavior 55, 1 (2006),

189�206.

[18] Potters, J., de Vries, C., and van Winden, F. An experimen-

tal examination of rational rent-seeking. European Journal of Political

Economy 14, 4 (1998), 783�800.

79



[19] Rapoport, A., and Amaldoss, W. Mixed-strategy play in single-

stage �rst-price all-pay auctions with symmetric players. Journal of

Economic Behavior & Organization 54, 4 (2004), 585�607.

[20] Rentschler, L. Incumbency in Imperfectly Discriminating Contests.

Working Paper, Texas A&M University (2010).

[21] Skaperdas, S. Contest success functions. Economic Theory 7, 2

(1996), 283�290.

[22] Tullock, G. The welfare cost of monopoly tari¤s and theft. Western

Economic Journal 3 (1967), 224�232.

[23] Warneryd, K. Information in con�icts. Journal of Economic Theory

110, 1 (2003), 121�136.

8 Appendix C

8.1 Description

Symmetric information all-pay auction with private signals.(SAP-PRIV)�

Participants engage in 30 all-pay auctions. In each of these all-pay auctions

each bidder privately observes a signal. These signals, z1 and z2; are in-

dependently drawn from a uniform distribution with support [x� 8; x+ 8].

In this treatment both bidders hold private information in the form of their

signal. Information is symmetric in that each signal is an equally precise

80



estimate of x. We do not have theoretical predictions for this treatment.25

We include this treatment for comparison with the results of Grosskopf et

al. (20010). Additionally, the susceptibility of bidders to bidding above the

break-even bidding strategy in such an environment is of interest.

8.1.1 Break-even Bidding in SAP-PRIV

A long literature experimentally studies this information structure in the

context of �rst-price, sealed-bid auctions.26 It is well documented that when

inexperienced bidders privately observe private signals they consistently fall

victim to the winner�s curse.27 Further, Grosskopf et al. (2010) show that

when inexperienced bidders in a �rst-price, sealed-bid auction do not observe

a signal prior to bidding the winner�s curse is almost completely eliminated.

Including the SAP-PRIV information structure for all-pay auctions allows us

to compare our results to those found in Grosskopf et al. (2010). Do bid-

ders who observe signals in all-pay auction bid above the beak-even bidding

strategy when their opponent also observes a signal?

As such, de�ning the break-even bidding strategy in the context of an

all-pay auction when both bidder�s observe private signals is important. If

bidders bid according to a monotonically increasing bid function, then the

25As noted in Athey (2001), a common value all-pay auction with conditionally inde-
pendent signals does not satisfy the single crossing property.
26See Kagel and Levin (2002) for a review of this literature.
27The winner�s curse is de�ned as bidding above a break-even threshold, such that when

a bidder wins an auction, they have negative expected pro�ts.
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bidder who observes the highest signal will win the auction. Thus, the

expected value of the good, conditional on winning the all-pay auction is the

same as the expected value of the good conditional on having the highest

signal. So, if bidder i bids above, E (X j zi > zj), the bidder will have a

negative expected payo¤, conditional on winning the auction. However, if

the bidder were to lose the auction, she would still have to pay her bid. As

such, the break-even bidding threshold, assuming the bidders are bidding

according to a monotonically increasing bid function is any bid greater than

F (Zj = zi j Zi = zi)E (X j zi > zj).

When zi 2 [x� �; x+ �),

F (Zj = zi j Zi = zi)E (X j Zi = zi > zj)

=

Z zi

x��

Z zj+�

x

xfX (x; zj j zi) dxdzj

=

Z zi

x��

Z zj+�

x

x
1

2� (zi + � � x)
dxdzj

=

�
zi + � � x

4�

��
zi + 2x+ �

3

�
.
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When zi 2 [x+ �; x� �) ;

F (Zj = zi j Zi = zi)E (X j Zi = zi > zj)

=

Z zi

zi�2�

Z zj+�

zi��
xfX (x; zj j zi) dxdzj

=

Z zi

x��

Z zj+�

x

x
1

4�2
dxdzj

=
zi
2
� �
6
.

When zi 2 [x� �; x+ �]

F (Zj = zi j Zi = zi)E (X j Zi = zi > zj)

=

Z zi

zi�2�

Z zj+�

zi��
xfX (x; zj j zi) dxdzj

=

Z x��

zi�2�

Z zj+�

zi��
x

1

2� (x+ � � zi)
dxdzj +

Z zi

x��

Z x

zi��
x

1

2� (x+ � � zi)
dxdzj

=
(zi + 5�) (zi � �) + x (zi + 5�)� 2x2

12�
.

That is,

F (Zj = zi j Zi = zi)E (X j Zi = zi > zj) =

8>>>>>>>>>>><>>>>>>>>>>>:

�
zi+��x
4�

��
zi+2x+�

3

�
if zi 2 [x� �; x+ �)

zi
2
� �

6
if zi 2 [x+ �; x� �)

(zi+5�)(zi��)+x(zi+5�)�2x2
12�

if zi 2 [x� �; x+ �] :
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Table 10: Revenue aggregated across all rounds and sessions
Average observed Average predicted

revenue revenue
Treatment (standard deviation) (standard deviation)

SAP 119:09 125:00
(65:77) (0:00)

AAP 95:23 88:24
(69:31) (29:80)

SAP-PRIV 140:88 �
(104:49)

SLC 96:76 62:50
(44:44) (0:00)

ALC 95:97 56:13
(56:83) (14:65)

8.2 Experimental Results

8.2.1 Revenue

Table 10 contains summary statistics regarding revenue. Notice that SAP-

PRIV auctions generate more revenue than any other treatment, on average.

We �nd dramatic results regarding revenue in all-pay auctions when both

bidders observe a private signal. In particular, we �nd that revenue is

greater than in any other treatment. Revenue in all-pay auctions where

both bidders observe a private signal is greater than when neither bidder

observes a signal (robust rank-order test, �U = 3:086, p < 0:028). Typically,

auction theory predicts that bidders who hold private information earn a

positive information rent, and reduce revenue relative to the case in which

their information is unobserved or made public. Our data suggests that
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providing bidders with private information can increase revenue. This result

is also observed in the context of �rst-price auctions in Grosskopf et al.

(2010).

We also �nd that revenue in all-pay auctions when both bidders observe

a private signal is greater than in asymmetric information all-pay auctions

(robust rank-order test, �U = n:d:, p = 0:004). This is also true in lottery

contests with symmetric (robust rank-order test, �U = n:d:, p = 0:004) and

asymmetric (robust rank-order test, �U = n:d:, p = 0:004).information.

8.2.2 Bidder Payo¤s

Table 11 contains summary statistics regarding bidder payo¤s. Notice that

SAP-PRIV bidders have the lowest payo¤s, on average.

We �nd that informed AAP bidders earn more than SAP-PRIV bid-

ders (robust rank-order test, �U = n:d:, p = 0:004). SAP bidders, who

hold no private information, have payo¤s signi�cantly greater than SAP-

PRIV bidders, who do hold private information (robust rank-order test,

�U = 2:564, p < 0:048). This surprising result is consistent with the �ndings

in Grosskopf et al. (2010) in which bidders in common-value, �rst price auc-

tions earn higher payo¤s when bidders do not observe private signals than

when all bidders observe private signals. We also �nd that uninformed AAP

bidders earn signi�cantly higher payo¤s than SAP-PRIV bidders (robust

rank-order test, �U = n:d:, p = 0:004).
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Table 11: Bidder payo¤s aggregated over all rounds and sessions
Average observed Average predicted

payo¤s payo¤s
Bidders (standard deviation) (standard deviation)
SAP �1:72 0

(62:77) (0)
AAP-Informed 26:38 27:29

(59:50) (27:70)
AAP-Uninformed �6:08 0

(44:06) (0)
SAP-PRIV �12:67 �

(62:34)
SLC 9:39 31:25

(68:58) (0)
ALC-Informed 22:72 31:20

(60:96) (26:85)
ALC-Uninformed �3:16 29:72

(54:68) (0)

8.2.3 Break-even Bidding

Table 12 contains summary statistics regarding break-even bidding.

8.2.4 Bidding

We �nd that SAP-PRIV bidders bid more than SAP bidders (robust rank-

order test, �U = 2:361, p < 0:048). We can not reject the hypothesis that

SAP-PRIV bidders bid the same amount as informed AAP bidders (robust
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Table 12: Bidding above the break-even bidding strategy aggregated across
all rounds and sessions

Frequency bid exceeds Frequency the
break-even bid: high (or only)

All Winning signal holder
Bidders bidders bidders wins
SAP 6:2% 12:1% NA

(93=1490) (90=745) NA
AAP-Informed 32:7% 30:4% 69:2%

(245=750) (158=519) (519=750)
AAP-Uninformed 4% 11:3% NA

(30=750) (26=205) NA
SAP-PRIV 62:87% 83:73% 58:67%

(943=1500) (628=750) (440=750)
SLC 8:1% 12:1% NA

(122=1500) (91=750) NA
ALC-Informed 34:3% 32:8% 50:7%

(257=750) (168=512) (380=750)
ALC-Uninformed 8:3% 16% NA

(62=750) (38=238) NA
NA = not applicable.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.
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Table 13: Bids relative to the Nash equilibrium aggregated over all rounds
and sessions

Average Average Frequency
Nash percent of

Average equilibrium over positive
Bidders bid bid Nash bids
SAP 59:54 62:5a �4:73% 90:13%

(46:50) (36:08) (0:74) (1353=1490)
AAP-Informed 61:11 38:49 385:48% 98:40%

(50:54) (34:55) (20:54) (738=750)
AAP-Uninformed 34:13 45:89a �25:63% 73:86%

(42:99) (36:85) (0:94) (554=750)
SAP-PRIV 70:44 � � 97:47%

(63:84) (1462=1500)
SLC 48:38 31:25 54:81% 94:20%

(30:38) (0:00) (0:97) (1413=1500)
ALC-Informed 61:02 26:53 229:95% 99:73%

(44:30) (14:59) (6:83) (748=750)
ALC-Uninformed 34:95 29:37 19:00% 89:47%

(33:69) (0:00) (1:15) (671=750)
aThis is the expected value of the equilibrium mixed strategy.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.
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Figure 7: The di¤erence between observed bids and break-even bids depend-
ing on the signal
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rank-order test, �U = 0:853, n:s:). SAP-PRIV bidders also bid more than

uninformed AAP bidders (robust rank-order test, �U = n:d:, p = 0:004).

9 Appendix D

What follows is a sample set of instructions. Instructions for the remaining

treatments are available upon request.

Introduction
Welcome. This experiment is about decision making in markets. The

following instructions describe the markets you will be in and the rules that

you will face. The decisions you make during this experiment will determine

how much money you earn. If you make good decisions, you can earn a

substantial amount of money. You will be paid in cash privately at the end

of our experiment.
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It is important that you remain silent and do not look at other people�s

work. If you have any questions, or need assistance of any kind, please raise

your hand and an experimenter will come to you. If you talk, laugh, exclaim

out loud, etc., you will be asked to leave and you will not be paid. We expect

and appreciate your cooperation.

We will go over these instructions with you. After we have read the

instructions, there will be time to ask clarifying questions. When we are

done going through the instructions, each of you will have to answer a few

brief questions to ensure everyone understands.

Overview
Our experiment will consist of 30 rounds. In each of these rounds, you will

be randomly paired with another participant in today�s experiment. Both

of you will be buyers in a market. In each market, there will be a single unit

of an indivisible good for sale. As a buyer, your task is to submit a bid for

the purchase of the good. You will receive earnings based on the outcome

of the market. This process will be repeated until all 30 rounds have been

completed.

Determination of Your Earnings
Each participant will receive a showup fee of $5. In addition, each par-

ticipant in this experiment will start with a balance of $3; 200 �experimental

dollars�(EDs). EDs will be traded in for cash at the end of the experiment

at a rate of $160ED = $1. Your starting balance can increase or decrease
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depending on your payo¤s in each round. That is, if you have a negative

payo¤ in a round, this loss will be deducted from your balance. If you earn

a positive payo¤, this is added to your balance. You are permitted to bid

more than your remaining balance. However, if after a round is completed

your balance is less than or equal to zero, you will not be able to participate

in any future rounds.

In each round, you and the other buyer in the market will submit a bid.

Both of those bids will have to be paid, but only one of the buyers will receive

the good. Each of the buyers has the following probability of receiving the

good:
(Own Bid)

(Own Bid)+(Other�s Bid)

Notice that if one a buyer submits a bid of zero, there is no chance of that

buyer receiving the good; the other buyer will receive the good with certainty.

If both buyers submit the same bid, then each of the buyers has a 50% chance

of receiving the good.

Notice that a buyer who receives the good can end up with a negative

payo¤, if he/she bids more than the good is worth. The buyer who does not

receive the good will always have a negative payo¤ if their bid was greater

than zero. No buyer is permitted to submit a bid that is lower than zero.

In each round, the value of the good, which we will denote as v�, will not

be known to the buyers. The value of this good will be between $25ED
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and $225ED. Any value between $25ED and $225ED is equally likely to

be chosen as v�. The value of the good in any given round is independent

of the value in any other round. That is, the value of the good in one round

will not have any e¤ect on the value of the good in a di¤erent round.

Private Information
In each market, one of the two buyers will be randomly chosen to receive

some private information about the value of the good (you can think of this as

�ipping a coin to determine which of the buyers will receive this information,

where the probability of the coin landing on each side is 50%). The person

who receives the private information will be given an estimate of the value

of the good. The estimate will be a randomly chosen number that is within

$8ED above or below the real value of v� (see the illustration below). Any

number between v� � $8ED, and v� + $8ED is equally likely to be chosen

as the private estimate. For example, if you receive a private estimate of

$125ED, then you know that v� is between $117ED and $133ED, inclusive.

It is possible for the estimate to be a value below $25ED or above $225ED,

but the real value of v� will always be between $25ED and $225ED.

Rounds
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As mentioned before, there will be 30 rounds in this experiment. In each

round there will be several markets going on simultaneously, with two buyers

in each market. After each round you will be randomly paired with another

participant in today�s experiment. This random assignment is done every

round so that two buyers will probably not be in the same market together

for two consecutive rounds. Further, this pairing is anonymous. That is,

if you are a buyer in a given market, you do not know which of the other

participants in the experiment is the other buyer in that market. Remember

that these di¤erent markets and rounds are independent from all others, and

from one another. The bids and the value of the good and the private

estimate in one market or round do not have any e¤ect on other markets or

rounds. Markets and rounds operate independently.

Summary

1. Each participant has a starting balance of $3; 200ED.

2. In every round, each participant will be a bidder in one market. Two

participants are randomly assigned to a market in each round.

3. In each market each buyer gets v� � (Own bid) with probability�
(Own Bid)

(Own Bid)+(Other�s Bid)

�
, and gets 0�(Own bid) with the remaining prob-

ability
�
1� (Own Bid)

(Own Bid)+(Other�s Bid)

�
. This payo¤ is added to the balance

of each bidder (a bidder�s balance will go down if the value is negative,

and up if this value is positive).

93



4. The value of the good, v�, is unknown. It is known that it is some-

where between $25ED and $225ED. Every value between $25ED and

$225ED is equally likely to be v�.

5. One of the two bidders in each market is randomly chosen to receive

a private estimate of v�. This estimate is not observed by the other

bidder in the market. This estimate is randomly drawn from the

interval between v� � $8ED and v� + $8ED, inclusive. Any number

from this interval is equally likely to be chosen as the private estimate.

6. Every participant will receive the show-up fee of $5. Additionally,

each participant will receive his/her balance at the end of all 30 rounds,

based on the $3; 200ED beginning balance and earnings in each market.

7. If a participant�s balance should become negative at any point during

this experiment, he/she will not be permitted to participate in future

rounds.

If you have any questions, raise your hand and one of us will come help

you. Please do not ask any questions out loud.

Questions
Before we begin the experiment, we would like you to answer a few ques-

tions that are meant to review the rules of today�s experiment. Please raise

your hand once you are done, and an experimenter will attend to you.

1. How many buyers are in each market?
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2. Who pays their bid in each market, the bidder who gets the good, the

bidder who doesn�t get the good, or both?

3. The private estimate must be within what range of v�?

4. Are you allowed to bid more than your current balance?

5. For each market, how many buyers get to see the estimate of v�?

6. If the bid of a buyer who receives the good in a market is $152:10ED,

and the value of the good is revealed to be $200:90ED, what is the

winner�s payo¤ for that market?

7. What would the earnings from question six have been if the value of

the good had been $25:90ED?

8. If Buyer 1 bids $150:00ED, and Buyer 2 bids $200:00ED, and the

value of the good is revealed to be $220:75ED, what are the payo¤s

for Buyer 1 and Buyer 2 if Buyer 2 receives the good?

9. What would the earnings from question eight have been if Buyer 1

received the good?
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